TPTP Problem File: RAL036^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : RAL036^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Real Algebra (Functions)
% Problem : International Mathematical Olympiad, 1993, Problem 5
% Version : [Mat16] axioms : Especial.
% English : Does there exist a function f : N -> N such that f(1) = 2,
% f(f(n)) = f(n) + n for all n in N, and f(n) < f(n + 1) for all
% n in N?
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-1993-5.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 6389 (2210 equ; 0 cnn)
% Maximal formula atoms : 20 ( 2 avg)
% Number of connectives : 39611 ( 104 ~; 233 |;1175 &;35972 @)
% (1095 <=>;1032 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4468 ( 372 atm;1205 fun; 954 num;1937 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2409 (2409 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1207 (1164 usr; 61 con; 0-9 aty)
% Number of variables : 8057 ( 405 ^;7086 !; 430 ?;8057 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: ZF; Score: 7; Author: Yiyang Zhan;
% Generated: 2014-12-10
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p,conjecture,
? [V_f: $int > $int] :
( ( ( V_f @ 1 )
= 2 )
& ! [V_n: $int] :
( ( 'int.is-natural-number/1' @ V_n )
=> ( ( 'int.is-natural-number/1' @ ( V_f @ V_n ) )
& ( ( V_f @ ( V_f @ V_n ) )
= ( $sum @ ( V_f @ V_n ) @ V_n ) )
& ( $less @ ( V_f @ V_n ) @ ( V_f @ ( $sum @ V_n @ 1 ) ) ) ) ) ) ).
%------------------------------------------------------------------------------