TPTP Problem File: RAL035^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : RAL035^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Real Algebra (Number sequences)
% Problem : International Mathematical Olympiad, 1991, Problem 6
% Version : [Mat16] axioms : Especial.
% English : An infinite sequence x_0, x_1, x_2, ... of real numbers is said to
% be bounded if there is a constant C such that |x_i| =< C for
% every i >= 0. Given any real number a > 1, construct a bounded
% infinite sequence x_0, x_1, x_2, ... such that
% |x_i - x_j| |i - j|^a >= 1 for every pair of distinct nonnegative
% integers i, j.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-1991-6.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3486 ( 728 unt;1200 typ; 0 def)
% Number of atoms : 6621 (2209 equ; 0 cnn)
% Maximal formula atoms : 20 ( 2 avg)
% Number of connectives : 39624 ( 105 ~; 233 |;1176 &;35983 @)
% (1095 <=>;1032 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4475 ( 375 atm;1207 fun; 955 num;1938 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1212 (1169 usr; 66 con; 0-9 aty)
% Number of variables : 8058 ( 405 ^;7087 !; 430 ?;8058 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: ZF; Score: 7; Author: Yiyang Zhan;
% Generated: 2014-12-17
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf('a/0_type',type,
'a/0': $real ).
thf(p,conjecture,
? [V_x: 'seq.Seq'] :
( ( 'seq.is-bounded/1' @ V_x )
& ( $greater @ 'a/0' @ 1.0 )
& ! [V_i: $int,V_j: $int] :
( ( ( V_i != V_j )
& ( $lesseq @ 0 @ V_i )
& ( $lesseq @ 0 @ V_j ) )
=> ( $lesseq @ 1.0 @ ( $product @ ( 'abs/1' @ ( $difference @ ( 'seq.nth-term-of/2' @ V_x @ ( 'seq.index/1' @ V_i ) ) @ ( 'seq.nth-term-of/2' @ V_x @ ( 'seq.index/1' @ V_j ) ) ) ) @ ( '^/2' @ ( 'abs/1' @ ( $to_real @ ( $difference @ V_i @ V_j ) ) ) @ 'a/0' ) ) ) ) ) ).
%------------------------------------------------------------------------------