TPTP Problem File: RAL032^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : RAL032^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Real Algebra (Simultaneous equations)
% Problem : International Mathematical Olympiad, 1979, Problem 5
% Version : [Mat16] axioms : Especial.
% English : Find all real numbers a for which there exist non-negative real
% numbers x_1, x_2, x_3, x_4, x_5 satisfying the relations
% sum_{k=1}^{5} k x_k = a, sum_{k=1}^{5} k^3 x_k = a^2,
% sum_{k=1}^{5} k^5 x_k = a^3.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-1979-5.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 6393 (2211 equ; 0 cnn)
% Maximal formula atoms : 20 ( 2 avg)
% Number of connectives : 39665 ( 104 ~; 233 |;1179 &;36023 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4516 ( 376 atm;1230 fun; 968 num;1942 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1214 (1164 usr; 68 con; 0-9 aty)
% Number of variables : 8061 ( 406 ^;7085 !; 434 ?;8061 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Score: 7; Author: Yiyang Zhan;
% Generated: 2014-12-26
% : Answer
% ^ [V_a_dot_0: $real] :
% ( ( V_a_dot_0 = 0.0 )
% | ( V_a_dot_0 = 1.0 )
% | ( V_a_dot_0 = 4.0 )
% | ( V_a_dot_0 = 9.0 )
% | ( V_a_dot_0 = 16.0 )
% | ( V_a_dot_0 = 25.0 ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p_qustion,conjecture,
( 'find/1' @ $real
@ ^ [V_a: $real] :
? [V_x1: $real,V_x2: $real,V_x3: $real,V_x4: $real,V_x5: $real] :
( ( $greatereq @ V_x1 @ 0.0 )
& ( $greatereq @ V_x2 @ 0.0 )
& ( $greatereq @ V_x3 @ 0.0 )
& ( $greatereq @ V_x4 @ 0.0 )
& ( $greatereq @ V_x5 @ 0.0 )
& ( ( $sum @ V_x1 @ ( $sum @ ( $product @ 2.0 @ V_x2 ) @ ( $sum @ ( $product @ 3.0 @ V_x3 ) @ ( $sum @ ( $product @ 4.0 @ V_x4 ) @ ( $product @ 5.0 @ V_x5 ) ) ) ) )
= V_a )
& ( ( $sum @ V_x1 @ ( $sum @ ( $product @ 8.0 @ V_x2 ) @ ( $sum @ ( $product @ 27.0 @ V_x3 ) @ ( $sum @ ( $product @ 64.0 @ V_x4 ) @ ( $product @ 125.0 @ V_x5 ) ) ) ) )
= ( $product @ V_a @ V_a ) )
& ( ( $sum @ V_x1 @ ( $sum @ ( $product @ 32.0 @ V_x2 ) @ ( $sum @ ( $product @ 243.0 @ V_x3 ) @ ( $sum @ ( $product @ 1024.0 @ V_x4 ) @ ( $product @ 3125.0 @ V_x5 ) ) ) ) )
= ( $product @ V_a @ ( $product @ V_a @ V_a ) ) ) ) ) ).
%------------------------------------------------------------------------------