TPTP Problem File: RAL030^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : RAL030^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Real Algebra (Inequalities)
% Problem : International Mathematical Olympiad, 1974, Problem 5
% Version : [Mat16] axioms : Especial.
% English : Determine all possible values of S = a/a+b+d + b/a+b+c + c/b+c+d +
% d/a+c+d where a, b, c, d are arbitrary positive numbers.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-1974-5.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 6390 (2209 equ; 0 cnn)
% Maximal formula atoms : 20 ( 2 avg)
% Number of connectives : 39636 ( 104 ~; 233 |;1176 &;35997 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4489 ( 375 atm;1218 fun; 955 num;1941 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1207 (1164 usr; 61 con; 0-9 aty)
% Number of variables : 8060 ( 406 ^;7085 !; 433 ?;8060 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Score: 7; Author: Jumma Kudo;
% Generated: 2014-11-26
% : Answer
% ^ [V_S_dot_0: $real] :
% ( ( $less @ 1.0 @ V_S_dot_0 )
% & ( $less @ V_S_dot_0 @ 2.0 ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p_qustion,conjecture,
( 'find/1' @ $real
@ ^ [V_S: $real] :
? [V_a: $real,V_b: $real,V_c: $real,V_d: $real] :
( ( $greater @ V_a @ 0.0 )
& ( $greater @ V_b @ 0.0 )
& ( $greater @ V_c @ 0.0 )
& ( $greater @ V_d @ 0.0 )
& ( V_S
= ( $sum @ ( $quotient @ V_a @ ( $sum @ V_a @ ( $sum @ V_b @ V_d ) ) ) @ ( $sum @ ( $quotient @ V_b @ ( $sum @ V_a @ ( $sum @ V_b @ V_c ) ) ) @ ( $sum @ ( $quotient @ V_c @ ( $sum @ V_b @ ( $sum @ V_c @ V_d ) ) ) @ ( $quotient @ V_d @ ( $sum @ V_a @ ( $sum @ V_c @ V_d ) ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------