TPTP Problem File: RAL027^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : RAL027^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Real Algebra (Functions)
% Problem : International Mathematical Olympiad, 1968, Problem 5
% Version : [Mat16] axioms : Especial.
% English : Let f be a real-valued function defined for all real numbers x
% such that, for some positive constant a, the equation f(x + a)
% = 1/2 + sqrt(f(x) - [f(x)]^2) holds for all x. (a) Prove that the
% function f is periodic (i.e., there exists a positive number b
% such that f(x + b) = f(x) for all x). (b) For a = 1, give an
% example of a non-constant function with the required properties.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-1968-5.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 6660 (2210 equ; 0 cnn)
% Maximal formula atoms : 20 ( 2 avg)
% Number of connectives : 39616 ( 104 ~; 233 |;1172 &;35980 @)
% (1095 <=>;1032 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4473 ( 371 atm;1208 fun; 954 num;1940 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1209 (1166 usr; 63 con; 0-9 aty)
% Number of variables : 8060 ( 405 ^;7088 !; 431 ?;8060 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: ZF; Score: 7; Author: Takuya Matsuzaki;
% Generated: 2015-01-24
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p1,conjecture,
! [V_f: 'R2R'] :
( ? [V_a: $real] :
! [V_x: $real] :
( ( 'funapp/2' @ V_f @ ( $sum @ V_x @ V_a ) )
= ( $sum @ ( $quotient @ 1.0 @ 2.0 ) @ ( 'sqrt/1' @ ( $difference @ ( 'funapp/2' @ V_f @ V_x ) @ ( '^/2' @ ( 'funapp/2' @ V_f @ V_x ) @ 2.0 ) ) ) ) )
=> ? [V_b: $real] :
! [V_x_dot_0: $real] :
( ( 'funapp/2' @ V_f @ ( $sum @ V_x_dot_0 @ V_b ) )
= ( 'funapp/2' @ V_f @ V_x_dot_0 ) ) ) ).
%------------------------------------------------------------------------------