TPTP Problem File: RAL022^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : RAL022^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Real Algebra (Basics of equation/inequality)
% Problem : International Mathematical Olympiad, 1963, Problem 1
% Version : [Mat16] axioms : Especial.
% English : Find all real roots of the equation sqrt(x^2 - p) +
% 2 sqrt(x^2 - 1) = x, where p is a real parameter.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-1963-1.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3486 ( 728 unt;1200 typ; 0 def)
% Number of atoms : 6605 (2209 equ; 0 cnn)
% Maximal formula atoms : 20 ( 2 avg)
% Number of connectives : 39608 ( 104 ~; 233 |;1172 &;35973 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4470 ( 371 atm;1207 fun; 955 num;1937 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1210 (1167 usr; 64 con; 0-9 aty)
% Number of variables : 8056 ( 406 ^;7085 !; 429 ?;8056 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Score: 6; Author: Jumma Kudo;
% Generated: 2014-12-16
% : Answer
% ^ [V_x_dot_0: $real] :
% ( ( $lesseq @ 'p/0' @ ( $quotient @ 4.0 @ 3.0 ) )
% & ( $lesseq @ 0.0 @ 'p/0' )
% & ( V_x_dot_0
% = ( $quotient @ ( $difference @ 4.0 @ 'p/0' ) @ ( 'sqrt/1' @ ( $product @ 8.0 @ ( $difference @ 2.0 @ 'p/0' ) ) ) ) ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf('p/0_type',type,
'p/0': $real ).
thf(p_qustion,conjecture,
( 'find/1' @ $real
@ ^ [V_x: $real] :
( ( $sum @ ( 'sqrt/1' @ ( $difference @ ( '^/2' @ V_x @ 2.0 ) @ 'p/0' ) ) @ ( $product @ 2.0 @ ( 'sqrt/1' @ ( $difference @ ( '^/2' @ V_x @ 2.0 ) @ 1.0 ) ) ) )
= V_x ) ) ).
%------------------------------------------------------------------------------