TPTP Problem File: RAL016^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : RAL016^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Real Algebra (Algebraic curves)
% Problem : Chart System Math III+C Blue Book, Problem 09CBCE009
% Version : [Mat16] axioms : Especial.
% English :
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : Chart-3C-Blue-09CBCE009.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 708 unt;1199 typ; 0 def)
% Number of atoms : 8178 (2212 equ; 0 cnn)
% Maximal formula atoms : 40 ( 3 avg)
% Number of connectives : 39637 ( 105 ~; 233 |;1177 &;35996 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4473 ( 372 atm;1206 fun; 957 num;1938 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1217 (1172 usr; 71 con; 0-9 aty)
% Number of variables : 8061 ( 408 ^;7085 !; 432 ?;8061 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Level: 4; Author: Munehiro Kobayashi;
% Generated: 2015-01-01
% : Answer
% ^ [V_answer_dot_0: ( ''ListOf'' @ $real )] :
% ( V_answer_dot_0
% = ( 'cons/2' @ $real @ 3.0 @ ( 'cons/2' @ $real @ 0.0 @ ( 'cons/2' @ $real @ -3.0 @ ( 'cons/2' @ $real @ 0.0 @ ( 'nil/0' @ $real ) ) ) ) ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p1_qustion,conjecture,
( 'find/1' @ ( 'ListOf' @ $real )
@ ^ [V_answer: 'ListOf' @ $real] :
? [V_E: '2d.Shape',V_F1: '2d.Point',V_F2: '2d.Point'] :
( ( V_E
= ( '2d.set-of-cfun/1'
@ ^ [V_x: $real,V_y: $real] :
( 1.0
= ( $sum @ ( $quotient @ ( '^/2' @ V_x @ 2.0 ) @ 25.0 ) @ ( $quotient @ ( '^/2' @ V_y @ 2.0 ) @ 16.0 ) ) ) ) )
& ( $less @ 0.0 @ ( '2d.x-coord/1' @ V_F1 ) )
& ( V_F1 != V_F2 )
& ( '2d.is-focus-of/2' @ V_F1 @ V_E )
& ( '2d.is-focus-of/2' @ V_F2 @ V_E )
& ( V_answer
= ( 'cons/2' @ $real @ ( '2d.x-coord/1' @ V_F1 ) @ ( 'cons/2' @ $real @ ( '2d.y-coord/1' @ V_F1 ) @ ( 'cons/2' @ $real @ ( '2d.x-coord/1' @ V_F2 ) @ ( 'cons/2' @ $real @ ( '2d.y-coord/1' @ V_F2 ) @ ( 'nil/0' @ $real ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------