TPTP Problem File: QUA009^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : QUA009^1 : TPTP v9.0.0. Released v4.1.0.
% Domain : Quantales
% Problem : leq is an order
% Version : [Hoe09] axioms.
% English : leq is an order. i.e., it is reflexive, transitive and
% antysymmetric
% Refs : [Con71] Conway (1971), Regular Algebra and Finite Machines
% : [Hoe09] Hoefner (2009), Email to Geoff Sutcliffe
% Source : [Hoe09]
% Names : QUA09 [Hoe09]
% Status : Theorem
% Rating : 1.00 v4.1.0
% Syntax : Number of formulae : 27 ( 13 unt; 12 typ; 7 def)
% Number of atoms : 40 ( 18 equ; 0 cnn)
% Maximal formula atoms : 7 ( 2 avg)
% Number of connectives : 61 ( 0 ~; 1 |; 8 &; 49 @)
% ( 1 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 2 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 43 ( 43 >; 0 *; 0 +; 0 <<)
% Number of symbols : 15 ( 13 usr; 4 con; 0-3 aty)
% Number of variables : 30 ( 15 ^; 11 !; 4 ?; 30 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
%----Include axioms for Quantales
include('Axioms/QUA001^0.ax').
%------------------------------------------------------------------------------
thf(multiplication_distrl,conjecture,
! [X1: $i,X2: $i,X3: $i] :
( ( leq @ X1 @ X1 )
& ( ( ( leq @ X1 @ X2 )
& ( leq @ X2 @ X3 ) )
=> ( leq @ X1 @ X3 ) )
& ( ( ( leq @ X1 @ X2 )
& ( leq @ X2 @ X1 ) )
=> ( X1 = X2 ) ) ) ).
%------------------------------------------------------------------------------