TPTP Problem File: PUZ148^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : PUZ148^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Puzzles (Combinatorics)
% Problem : International Mathematical Olympiad, 1974, Problem 3
% Version : [Mat16] axioms : Especial.
% English : Prove that the number sum_{k=0}^n binom{2n+1}{2k+1} 2^{3k} is
% not divisible by 5 for any integer n geq 0.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-1974-3.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 6408 (2208 equ; 0 cnn)
% Maximal formula atoms : 20 ( 2 avg)
% Number of connectives : 39618 ( 105 ~; 233 |;1172 &;35981 @)
% (1095 <=>;1032 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4479 ( 372 atm;1209 fun; 960 num;1938 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1211 (1168 usr; 65 con; 0-9 aty)
% Number of variables : 8057 ( 406 ^;7086 !; 429 ?;8057 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: PA; Score: 8; Author: Jumma Kudo;
% Generated: 2014-11-27
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p,conjecture,
! [V_n: $int] :
( ( $lesseq @ 0 @ V_n )
=> ~ ( 'int.is-divisible-by/2'
@ ( 'int.sum/1'
@ ( 'int.finseq/3'
@ ^ [V_k: $int] : ( $product @ ( 'int.combination/2' @ ( $sum @ ( $product @ 2 @ V_n ) @ 1 ) @ ( $sum @ ( $product @ 2 @ V_k ) @ 1 ) ) @ ( 'int.^/2' @ 2 @ ( $product @ 3 @ V_k ) ) )
@ 0
@ V_n ) )
@ 5 ) ) ).
%------------------------------------------------------------------------------