TPTP Problem File: PUZ147^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : PUZ147^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Puzzles (Combinatorics)
% Problem : International Mathematical Olympiad, 1972, Problem 3
% Version : [Mat16] axioms : Especial.
% English : Let m and n be arbitrary non-negative integers. Prove that
% (2m)! (2n)!/m! n! (m+n)! is an integer. (0! = 1.)
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-1972-3.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 6397 (2208 equ; 0 cnn)
% Maximal formula atoms : 20 ( 2 avg)
% Number of connectives : 39617 ( 104 ~; 233 |;1173 &;35980 @)
% (1095 <=>;1032 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4475 ( 373 atm;1209 fun; 955 num;1938 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1208 (1165 usr; 62 con; 0-9 aty)
% Number of variables : 8057 ( 405 ^;7087 !; 429 ?;8057 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: PA; Score: 7; Author: Jumma Kudo;
% Generated: 2014-11-27
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p,conjecture,
! [V_m: $int,V_n: $int] :
( ( ( $greatereq @ V_m @ 0 )
& ( $greatereq @ V_n @ 0 ) )
=> ( 'int.is-divisible-by/2' @ ( $product @ ( 'int.factorial/1' @ ( $product @ 2 @ V_m ) ) @ ( 'int.factorial/1' @ ( $product @ 2 @ V_n ) ) ) @ ( $product @ ( 'int.factorial/1' @ V_n ) @ ( $product @ ( 'int.factorial/1' @ V_m ) @ ( 'int.factorial/1' @ ( $sum @ V_n @ V_m ) ) ) ) ) ) ).
%------------------------------------------------------------------------------