TPTP Problem File: PUZ136^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : PUZ136^1 : TPTP v9.0.0. Released v5.2.0.
% Domain : Puzzles
% Problem : Under two assumptions there are at least two individuals.
% Version : Especial.
% English :
% Refs : [Bro11] Brown (2011), Email to Geoff Sutcliffe
% Source : [Bro11]
% Names :
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.08 v8.2.0, 0.09 v8.1.0, 0.17 v7.4.0, 0.11 v7.3.0, 0.10 v7.2.0, 0.12 v7.1.0, 0.14 v7.0.0, 0.12 v6.4.0, 0.14 v6.3.0, 0.17 v6.0.0, 0.00 v5.2.0
% Syntax : Number of formulae : 8 ( 2 unt; 5 typ; 0 def)
% Number of atoms : 2 ( 0 equ; 0 cnn)
% Maximal formula atoms : 1 ( 0 avg)
% Number of connectives : 9 ( 2 ~; 0 |; 1 &; 6 @)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 5 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 3 ( 3 >; 0 *; 0 +; 0 <<)
% Number of symbols : 5 ( 5 usr; 4 con; 0-2 aty)
% Number of variables : 3 ( 0 ^; 0 !; 3 ?; 3 :)
% SPC : TH0_THM_NEQ_NAR
% Comments : The conclusion is given using a higher order quantifier.
% Satallax tends to find solutions by instantiating for P twice.
% A solution instantiating it once is to take P x := (x = horus),
% X := horus. Instantiating Y three times gives you that everyone
% is the same as horus, so the two axioms conflict. This problem
% is a simplification of CSR138^1.
%------------------------------------------------------------------------------
thf(parent,type,
parent: $i > $i > $o ).
thf(kronus,type,
kronus: $i ).
thf(zeus,type,
zeus: $i ).
thf(ax1,axiom,
parent @ kronus @ zeus ).
thf(sutekh,type,
sutekh: $i ).
thf(horus,type,
horus: $i ).
thf(ax2,axiom,
~ ( parent @ sutekh @ horus ) ).
thf(hotwo,conjecture,
? [P: $i > $o,X: $i,Y: $i] :
( ( P @ X )
& ~ ( P @ Y ) ) ).
%------------------------------------------------------------------------------