TPTP Problem File: PUZ098^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : PUZ098^5 : TPTP v9.0.0. Bugfixed v6.2.0.
% Domain : Puzzles
% Problem : TPS problem from CHECKERBOARD-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_0583 [Bro09]
% Status : Unknown
% Rating : 1.00 v6.2.0
% Syntax : Number of formulae : 17 ( 7 unt; 9 typ; 7 def)
% Number of atoms : 35 ( 19 equ; 0 cnn)
% Maximal formula atoms : 2 ( 4 avg)
% Number of connectives : 77 ( 2 ~; 7 |; 9 &; 57 @)
% ( 0 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 2 ( 1 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 44 ( 44 >; 0 *; 0 +; 0 <<)
% Number of symbols : 10 ( 9 usr; 1 con; 0-4 aty)
% Number of variables : 24 ( 11 ^; 8 !; 5 ?; 24 :)
% SPC : TH0_UNK_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
% Bugfixes : v5.2.0 - Added missing type declarations.
% : v6.2.0 - Reordered definitions.
%------------------------------------------------------------------------------
thf(c1_type,type,
c1: $i ).
thf(s_type,type,
s: $i > $i ).
thf(cCKB_BLACK_type,type,
cCKB_BLACK: $i > $i > $o ).
thf(cCKB_EVEN_type,type,
cCKB_EVEN: $i > $o ).
thf(cCKB_FIN_type,type,
cCKB_FIN: ( $i > $i > $o ) > $o ).
thf(cCKB_INF_type,type,
cCKB_INF: ( $i > $i > $o ) > $o ).
thf(cCKB_INJ_type,type,
cCKB_INJ: ( $i > $i > $i > $i > $o ) > $o ).
thf(cCKB_ODD_type,type,
cCKB_ODD: $i > $o ).
thf(cCKB_XPL_type,type,
cCKB_XPL: ( $i > $i > $i > $i > $o ) > ( $i > $i > $o ) > $i > $i > $o ).
thf(cCKB_INJ_def,definition,
( cCKB_INJ
= ( ^ [Xh: $i > $i > $i > $i > $o] :
! [Xx1: $i,Xy1: $i,Xx2: $i,Xy2: $i,Xu: $i,Xv: $i] :
( ( ( Xh @ Xx1 @ Xy1 @ Xu @ Xv )
& ( Xh @ Xx2 @ Xy2 @ Xu @ Xv ) )
=> ( ( Xx1 = Xx2 )
& ( Xy1 = Xy2 ) ) ) ) ) ).
thf(cCKB_XPL_def,definition,
( cCKB_XPL
= ( ^ [Xh: $i > $i > $i > $i > $o,Xk: $i > $i > $o,Xm: $i,Xn: $i] :
( ( Xk @ Xm @ Xn )
& ! [Xx: $i,Xy: $i] :
( ( Xk @ Xx @ Xy )
=> ? [Xu: $i,Xv: $i] :
( ( Xh @ Xx @ Xy @ Xu @ Xv )
& ( Xk @ Xu @ Xv )
& ~ ( ( Xu = Xm )
& ( Xv = Xn ) ) ) ) ) ) ) ).
thf(cCKB_INF_def,definition,
( cCKB_INF
= ( ^ [Xk: $i > $i > $o] :
? [Xh: $i > $i > $i > $i > $o,Xm: $i,Xn: $i] :
( ( cCKB_INJ @ Xh )
& ( cCKB_XPL @ Xh @ Xk @ Xm @ Xn ) ) ) ) ).
thf(cCKB_FIN_def,definition,
( cCKB_FIN
= ( ^ [Xk: $i > $i > $o] :
~ ( cCKB_INF @ Xk ) ) ) ).
thf(cCKB_ODD_def,definition,
( cCKB_ODD
= ( ^ [Xx: $i] :
( ( Xx = c1 )
| ( Xx
= ( s @ ( s @ c1 ) ) )
| ( Xx
= ( s @ ( s @ ( s @ ( s @ c1 ) ) ) ) )
| ( Xx
= ( s @ ( s @ ( s @ ( s @ ( s @ ( s @ c1 ) ) ) ) ) ) ) ) ) ) ).
thf(cCKB_EVEN_def,definition,
( cCKB_EVEN
= ( ^ [Xx: $i] :
( ( Xx
= ( s @ c1 ) )
| ( Xx
= ( s @ ( s @ ( s @ c1 ) ) ) )
| ( Xx
= ( s @ ( s @ ( s @ ( s @ ( s @ c1 ) ) ) ) ) )
| ( Xx
= ( s @ ( s @ ( s @ ( s @ ( s @ ( s @ ( s @ c1 ) ) ) ) ) ) ) ) ) ) ) ).
thf(cCKB_BLACK_def,definition,
( cCKB_BLACK
= ( ^ [Xu: $i,Xv: $i] :
( ( ( cCKB_ODD @ Xu )
& ( cCKB_ODD @ Xv ) )
| ( ( cCKB_EVEN @ Xu )
& ( cCKB_EVEN @ Xv ) ) ) ) ) ).
thf(cL7000,conjecture,
cCKB_FIN @ cCKB_BLACK ).
%------------------------------------------------------------------------------