TPTP Problem File: PUZ088^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : PUZ088^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Puzzles
% Problem : TPS problem THM68
% Version : Especial.
% English : If everyone likes Bruce and Lyle likes everyone who likes someone
% then someone likes everyone.
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_0122 [Bro09]
% : tps_0220 [Bro09]
% : tps_0223 [Bro09]
% : THM68 [TPS]
% : THM68A [TPS]
% : THM68B [TPS]
% : THM102 [TPS]
% Status : Theorem
% Rating : 0.00 v6.1.0, 0.17 v6.0.0, 0.00 v4.0.0
% Syntax : Number of formulae : 4 ( 0 unt; 3 typ; 0 def)
% Number of atoms : 4 ( 0 equ; 0 cnn)
% Maximal formula atoms : 4 ( 4 avg)
% Number of connectives : 11 ( 0 ~; 0 |; 1 &; 8 @)
% ( 0 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 8 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 2 ( 2 >; 0 *; 0 +; 0 <<)
% Number of symbols : 3 ( 3 usr; 2 con; 0-2 aty)
% Number of variables : 5 ( 0 ^; 3 !; 2 ?; 5 :)
% SPC : TH0_THM_NEQ_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(cLIKES,type,
cLIKES: $i > $i > $o ).
thf(cLYLE,type,
cLYLE: $i ).
thf(cBRUCE,type,
cBRUCE: $i ).
thf(cTHM68A,conjecture,
( ( ! [X: $i] : ( cLIKES @ X @ cBRUCE )
& ! [Y: $i] :
( ? [Z: $i] : ( cLIKES @ Y @ Z )
=> ( cLIKES @ cLYLE @ Y ) ) )
=> ? [U: $i] :
! [V: $i] : ( cLIKES @ U @ V ) ) ).
%------------------------------------------------------------------------------