TPTP Problem File: PUZ069+2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : PUZ069+2 : TPTP v9.0.0. Bugfixed v5.4.0.
% Domain : Puzzles (Sudoku)
% Problem : Tuesday's Sudoku
% Version : [Kos08] axioms : Especial.
% English : 1 76
% 85
% 2 3
% 24
% 9 6
% 53
% 7 1
% 3 2
% Refs : [Kos08] Kossey (2008), Email to G. Sutcliffe
% Source : [Kos08]
% Names :
% Status : Satisfiable
% Rating : 0.00 v7.3.0, 0.67 v7.1.0, 0.00 v5.4.0
% Syntax : Number of formulae : 10547 ( 17 unt; 0 def)
% Number of atoms : 23345 ( 0 equ)
% Maximal formula atoms : 9 ( 2 avg)
% Number of connectives : 23004 (10206 ~;2592 |; 0 &)
% ( 0 <=>;10206 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 3 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 1 ( 1 usr; 0 prp; 3-3 aty)
% Number of functors : 9 ( 9 usr; 9 con; 0-0 aty)
% Number of variables : 0 ( 0 !; 0 ?)
% SPC : FOF_SAT_EPR_NEQ
% Comments :
% Bugfixes : v5.4.0 - fixed axiom in PUZ006+0.ax
%------------------------------------------------------------------------------
include('Axioms/PUZ006+0.ax').
%------------------------------------------------------------------------------
fof(ax353,axiom,
p(n1,n1,n1) ).
fof(ax354,axiom,
p(n1,n3,n7) ).
fof(ax355,axiom,
p(n1,n4,n6) ).
fof(ax356,axiom,
p(n2,n6,n8) ).
fof(ax357,axiom,
p(n2,n7,n5) ).
fof(ax358,axiom,
p(n3,n2,n2) ).
fof(ax359,axiom,
p(n3,n7,n3) ).
fof(ax360,axiom,
p(n4,n4,n2) ).
fof(ax361,axiom,
p(n4,n5,n4) ).
fof(ax362,axiom,
p(n5,n1,n9) ).
fof(ax363,axiom,
p(n5,n8,n6) ).
fof(ax364,axiom,
p(n6,n5,n5) ).
fof(ax365,axiom,
p(n6,n6,n3) ).
fof(ax366,axiom,
p(n7,n4,n7) ).
fof(ax367,axiom,
p(n7,n8,n1) ).
fof(ax368,axiom,
p(n8,n2,n3) ).
fof(ax369,axiom,
p(n8,n7,n2) ).
%------------------------------------------------------------------------------