TPTP Problem File: PUZ063-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : PUZ063-1 : TPTP v9.0.0. Released v3.2.0.
% Domain : Puzzles
% Problem : Problem about mutilated chessboard problem
% Version : [Pau06] axioms : Especial.
% English :
% Refs : [Pau06] Paulson (2006), Email to G. Sutcliffe
% Source : [Pau06]
% Names : Mutil__tiling_UnI_1 [Pau06]
% Status : Unsatisfiable
% Rating : 0.20 v8.2.0, 0.14 v8.1.0, 0.11 v7.5.0, 0.16 v7.4.0, 0.12 v7.3.0, 0.17 v7.1.0, 0.08 v7.0.0, 0.20 v6.3.0, 0.09 v6.2.0, 0.20 v6.1.0, 0.36 v6.0.0, 0.20 v5.5.0, 0.35 v5.3.0, 0.28 v5.2.0, 0.38 v5.1.0, 0.41 v5.0.0, 0.29 v4.1.0, 0.38 v4.0.1, 0.27 v4.0.0, 0.36 v3.7.0, 0.30 v3.5.0, 0.36 v3.4.0, 0.42 v3.3.0, 0.43 v3.2.0
% Syntax : Number of clauses : 2735 ( 651 unt; 248 nHn;1962 RR)
% Number of literals : 5999 (1280 equ;3075 neg)
% Maximal clause size : 7 ( 2 avg)
% Maximal term depth : 8 ( 1 avg)
% Number of predicates : 87 ( 86 usr; 0 prp; 1-3 aty)
% Number of functors : 237 ( 237 usr; 48 con; 0-18 aty)
% Number of variables : 5685 (1154 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : The problems in the [Pau06] collection each have very many axioms,
% of which only a small selection are required for the refutation.
% The mission is to find those few axioms, after which a refutation
% can be quite easily found.
%------------------------------------------------------------------------------
include('Axioms/MSC001-1.ax').
include('Axioms/MSC001-0.ax').
%------------------------------------------------------------------------------
cnf(cls_Mutil_Odomino_Ohoriz_0,axiom,
c_in(c_insert(c_Pair(V_i,V_j,tc_nat,tc_nat),c_insert(c_Pair(V_i,c_Suc(V_j),tc_nat,tc_nat),c_emptyset,tc_prod(tc_nat,tc_nat)),tc_prod(tc_nat,tc_nat)),c_Mutil_Odomino,tc_set(tc_prod(tc_nat,tc_nat))) ).
cnf(cls_Mutil_Odomino_Overtl_0,axiom,
c_in(c_insert(c_Pair(V_i,V_j,tc_nat,tc_nat),c_insert(c_Pair(c_Suc(V_i),V_j,tc_nat,tc_nat),c_emptyset,tc_prod(tc_nat,tc_nat)),tc_prod(tc_nat,tc_nat)),c_Mutil_Odomino,tc_set(tc_prod(tc_nat,tc_nat))) ).
cnf(cls_Mutil_Otiling_OUn_0,axiom,
( ~ c_in(V_a,V_A,tc_set(T_a))
| ~ c_in(V_t,c_Mutil_Otiling(V_A,T_a),tc_set(T_a))
| c_inter(V_a,V_t,T_a) != c_emptyset
| c_in(c_union(V_a,V_t,T_a),c_Mutil_Otiling(V_A,T_a),tc_set(T_a)) ) ).
cnf(cls_Mutil_Otiling_Oempty_0,axiom,
c_in(c_emptyset,c_Mutil_Otiling(V_A,T_a),tc_set(T_a)) ).
cnf(cls_Set_OUn__assoc_0,axiom,
c_union(c_union(V_A,V_B,T_a),V_C,T_a) = c_union(V_A,c_union(V_B,V_C,T_a),T_a) ).
cnf(cls_conjecture_0,negated_conjecture,
c_in(v_u,c_Mutil_Otiling(v_A,t_a),tc_set(t_a)) ).
cnf(cls_conjecture_1,negated_conjecture,
c_inter(c_emptyset,v_u,t_a) = c_emptyset ).
cnf(cls_conjecture_2,negated_conjecture,
~ c_in(c_union(c_emptyset,v_u,t_a),c_Mutil_Otiling(v_A,t_a),tc_set(t_a)) ).
%------------------------------------------------------------------------------