TPTP Problem File: PUZ062-2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : PUZ062-2 : TPTP v9.0.0. Released v3.2.0.
% Domain : Puzzles
% Problem : Problem about mutilated chessboard problem
% Version : [Pau06] axioms : Reduced > Especial.
% English :
% Refs : [Pau06] Paulson (2006), Email to G. Sutcliffe
% Source : [Pau06]
% Names :
% Status : Unsatisfiable
% Rating : 0.25 v9.0.0, 0.30 v8.2.0, 0.33 v8.1.0, 0.21 v7.5.0, 0.26 v7.4.0, 0.29 v7.3.0, 0.25 v7.1.0, 0.17 v7.0.0, 0.33 v6.3.0, 0.27 v6.2.0, 0.50 v6.1.0, 0.57 v6.0.0, 0.50 v5.5.0, 0.75 v5.4.0, 0.80 v5.3.0, 0.83 v5.2.0, 0.75 v5.1.0, 0.76 v5.0.0, 0.64 v4.1.0, 0.62 v4.0.1, 0.64 v3.7.0, 0.50 v3.5.0, 0.55 v3.4.0, 0.58 v3.3.0, 0.57 v3.2.0
% Syntax : Number of clauses : 13 ( 8 unt; 1 nHn; 10 RR)
% Number of literals : 20 ( 6 equ; 8 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 6 ( 2 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 2-3 aty)
% Number of functors : 20 ( 20 usr; 11 con; 0-4 aty)
% Number of variables : 20 ( 5 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : The problems in the [Pau06] collection each have very many axioms,
% of which only a small selection are required for the refutation.
% The mission is to find those few axioms, after which a refutation
% can be quite easily found. This version has only the necessary
% axioms.
%------------------------------------------------------------------------------
cnf(cls_Finite__Set_Ocard__insert__disjoint_0,axiom,
( ~ c_in(V_A,c_Finite__Set_OFinites,tc_set(T_a))
| c_in(V_x,V_A,T_a)
| c_Finite__Set_Ocard(c_insert(V_x,V_A,T_a),T_a) = c_Suc(c_Finite__Set_Ocard(V_A,T_a)) ) ).
cnf(cls_Finite__Set_Ofinite__Int_1,axiom,
( ~ c_in(V_G,c_Finite__Set_OFinites,tc_set(T_a))
| c_in(c_inter(V_F,V_G,T_a),c_Finite__Set_OFinites,tc_set(T_a)) ) ).
cnf(cls_Mutil_Otiling__domino__finite_0,axiom,
( ~ c_in(V_t,c_Mutil_Otiling(c_Mutil_Odomino,tc_prod(tc_nat,tc_nat)),tc_set(tc_prod(tc_nat,tc_nat)))
| c_in(V_t,c_Finite__Set_OFinites,tc_set(tc_prod(tc_nat,tc_nat))) ) ).
cnf(cls_Set_OInt__iff_1,axiom,
( ~ c_in(V_c,c_inter(V_A,V_B,T_a),T_a)
| c_in(V_c,V_B,T_a) ) ).
cnf(cls_Set_OInt__iff_2,axiom,
( ~ c_in(V_c,V_B,T_a)
| ~ c_in(V_c,V_A,T_a)
| c_in(V_c,c_inter(V_A,V_B,T_a),T_a) ) ).
cnf(cls_Set_Oinsert__iff_1,axiom,
c_in(V_x,c_insert(V_x,V_A,T_a),T_a) ).
cnf(cls_Set_Oempty__iff_0,axiom,
~ c_in(V_c,c_emptyset,T_a) ).
cnf(cls_conjecture_0,negated_conjecture,
c_in(v_t,c_Mutil_Otiling(c_Mutil_Odomino,tc_prod(tc_nat,tc_nat)),tc_set(tc_prod(tc_nat,tc_nat))) ).
cnf(cls_conjecture_1,negated_conjecture,
c_Finite__Set_Ocard(c_inter(c_Mutil_Ocoloured(c_0),v_t,tc_prod(tc_nat,tc_nat)),tc_prod(tc_nat,tc_nat)) = c_Finite__Set_Ocard(c_inter(c_Mutil_Ocoloured(c_Suc(c_0)),v_t,tc_prod(tc_nat,tc_nat)),tc_prod(tc_nat,tc_nat)) ).
cnf(cls_conjecture_2,negated_conjecture,
c_inter(v_a,v_t,tc_prod(tc_nat,tc_nat)) = c_emptyset ).
cnf(cls_conjecture_3,negated_conjecture,
c_inter(c_Mutil_Ocoloured(c_0),v_a,tc_prod(tc_nat,tc_nat)) = c_insert(c_Pair(v_i,v_j,tc_nat,tc_nat),c_emptyset,tc_prod(tc_nat,tc_nat)) ).
cnf(cls_conjecture_4,negated_conjecture,
c_inter(c_Mutil_Ocoloured(c_Suc(c_0)),v_a,tc_prod(tc_nat,tc_nat)) = c_insert(c_Pair(v_m,v_n,tc_nat,tc_nat),c_emptyset,tc_prod(tc_nat,tc_nat)) ).
cnf(cls_conjecture_5,negated_conjecture,
c_Finite__Set_Ocard(c_insert(c_Pair(v_i,v_j,tc_nat,tc_nat),c_inter(c_Mutil_Ocoloured(c_0),v_t,tc_prod(tc_nat,tc_nat)),tc_prod(tc_nat,tc_nat)),tc_prod(tc_nat,tc_nat)) != c_Finite__Set_Ocard(c_insert(c_Pair(v_m,v_n,tc_nat,tc_nat),c_inter(c_Mutil_Ocoloured(c_Suc(c_0)),v_t,tc_prod(tc_nat,tc_nat)),tc_prod(tc_nat,tc_nat)),tc_prod(tc_nat,tc_nat)) ).
%------------------------------------------------------------------------------