TPTP Problem File: PUZ056-2.005.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : PUZ056-2.005 : TPTP v9.0.0. Released v3.5.0.
% Domain : Puzzles
% Problem : Towers of Hanoi k=05
% Version : Especial.
% English : Each instance encodes Tower of Hanoi with n discs as a
% reachability problem.
% Refs : [NV07] Navarro (2007), Email to Geoff Sutcliffe
% Source : [NV07]
% Names : hanoi-k05 [NV07a]
% Status : Unsatisfiable
% Rating : 0.00 v3.5.0
% Syntax : Number of clauses : 16 ( 11 unt; 0 nHn; 15 RR)
% Number of literals : 41 ( 0 equ; 29 neg)
% Maximal clause size : 10 ( 2 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 2 ( 2 usr; 0 prp; 2-5 aty)
% Number of functors : 3 ( 3 usr; 3 con; 0-0 aty)
% Number of variables : 30 ( 2 sgn)
% SPC : CNF_UNS_EPR_NEQ_HRN
% Comments : k >= 13 not solved by any prover in less than 1 hr. (2007)
%------------------------------------------------------------------------------
cnf(rule1,axiom,
( ~ p(I,T1,T2,T3,T4)
| p(J,T1,T2,T3,T4) ) ).
cnf(rule2,axiom,
( ~ p(T0,I,T2,T3,T4)
| ~ neq(T0,I)
| ~ neq(T0,J)
| p(T0,J,T2,T3,T4) ) ).
cnf(rule3,axiom,
( ~ p(T0,T1,I,T3,T4)
| ~ neq(T0,I)
| ~ neq(T0,J)
| ~ neq(T1,I)
| ~ neq(T1,J)
| p(T0,T1,J,T3,T4) ) ).
cnf(rule4,axiom,
( ~ p(T0,T1,T2,I,T4)
| ~ neq(T0,I)
| ~ neq(T0,J)
| ~ neq(T1,I)
| ~ neq(T1,J)
| ~ neq(T2,I)
| ~ neq(T2,J)
| p(T0,T1,T2,J,T4) ) ).
cnf(rule5,axiom,
( ~ p(T0,T1,T2,T3,I)
| ~ neq(T0,I)
| ~ neq(T0,J)
| ~ neq(T1,I)
| ~ neq(T1,J)
| ~ neq(T2,I)
| ~ neq(T2,J)
| ~ neq(T3,I)
| ~ neq(T3,J)
| p(T0,T1,T2,T3,J) ) ).
cnf(neq1,axiom,
~ neq(s0,s0) ).
cnf(neq2,axiom,
neq(s0,s1) ).
cnf(neq3,axiom,
neq(s0,s2) ).
cnf(neq4,axiom,
neq(s1,s0) ).
cnf(neq5,axiom,
~ neq(s1,s1) ).
cnf(neq6,axiom,
neq(s1,s2) ).
cnf(neq7,axiom,
neq(s2,s0) ).
cnf(neq8,axiom,
neq(s2,s1) ).
cnf(neq9,axiom,
~ neq(s2,s2) ).
cnf(init,axiom,
p(s0,s0,s0,s0,s0) ).
cnf(goal,negated_conjecture,
~ p(s2,s2,s2,s2,s2) ).
%------------------------------------------------------------------------------