TPTP Problem File: PUZ054-10.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : PUZ054-10 : TPTP v9.0.0. Released v7.5.0.
% Domain : Puzzles
% Problem : Take black and white balls from a bag
% Version : Especial.
% English :
% Refs : [CS18] Claessen & Smallbone (2018), Efficient Encodings of Fi
% : [Sma18] Smallbone (2018), Email to Geoff Sutcliffe
% Source : [Sma18]
% Names :
% Status : Satisfiable
% Rating : 0.00 v7.5.0
% Syntax : Number of clauses : 6 ( 6 unt; 0 nHn; 2 RR)
% Number of literals : 6 ( 6 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 12 ( 3 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 5 ( 5 usr; 2 con; 0-4 aty)
% Number of variables : 9 ( 1 sgn)
% SPC : CNF_SAT_RFO_PEQ_UEQ
% Comments : Converted from PUZ054-1 to UEQ using [CS18].
%------------------------------------------------------------------------------
cnf(ifeq_axiom,axiom,
ifeq(A,A,B,C) = B ).
cnf(initial_state,axiom,
p(s(s(s(s(s(s(s(s(s(s(n0)))))))))),s(s(s(s(s(s(s(s(s(n0)))))))))) = true ).
cnf(two_whites_out_one_black_in,axiom,
ifeq(p(s(s(X)),Y),true,p(X,s(Y)),true) = true ).
cnf(two_blacks_out_one_black_in,axiom,
ifeq(p(X,s(s(Y))),true,p(X,s(Y)),true) = true ).
cnf(two_different_balls_out_one_white_in,axiom,
ifeq(p(s(X),s(Y)),true,p(s(X),Y),true) = true ).
cnf(goal_state,negated_conjecture,
p(s(n0),n0) != true ).
%------------------------------------------------------------------------------