TPTP Problem File: PUZ047+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : PUZ047+1 : TPTP v9.0.0. Released v2.5.0.
% Domain : Syntactic
% Problem : Taking the wolf, goat, and cabbage across river
% Version : Especial.
% English :
% Refs : [And97] Andrews (1994), Email to G. Sutcliffe
% Source : [And97]
% Names : THM100 [And97]
% Status : Theorem
% Rating : 0.13 v9.0.0, 0.00 v8.2.0, 0.07 v8.1.0, 0.14 v7.5.0, 0.05 v7.4.0, 0.00 v6.4.0, 0.07 v6.3.0, 0.00 v6.1.0, 0.04 v6.0.0, 0.25 v5.5.0, 0.08 v5.4.0, 0.09 v5.3.0, 0.22 v5.2.0, 0.07 v5.0.0, 0.05 v4.1.0, 0.11 v4.0.0, 0.05 v3.7.0, 0.00 v2.5.0
% Syntax : Number of formulae : 1 ( 0 unt; 0 def)
% Number of atoms : 30 ( 0 equ)
% Maximal formula atoms : 30 ( 30 avg)
% Number of connectives : 29 ( 0 ~; 0 |; 14 &)
% ( 0 <=>; 15 =>; 0 <=; 0 <~>)
% Maximal formula depth : 18 ( 18 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 1 ( 1 usr; 0 prp; 5-5 aty)
% Number of functors : 7 ( 7 usr; 3 con; 0-1 aty)
% Number of variables : 19 ( 18 !; 1 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments :
%--------------------------------------------------------------------------
fof(thm100,conjecture,
( ( p(south,south,south,south,start)
& ! [T] :
( p(south,north,south,north,T)
=> p(north,north,south,north,go_alone(T)) )
& ! [T1] :
( p(north,north,south,north,T1)
=> p(south,north,south,north,go_alone(T1)) )
& ! [T2] :
( p(south,south,north,south,T2)
=> p(north,south,north,south,go_alone(T2)) )
& ! [T3] :
( p(north,south,north,south,T3)
=> p(south,south,north,south,go_alone(T3)) )
& ! [T4] :
( p(south,south,south,north,T4)
=> p(north,north,south,north,take_wolf(T4)) )
& ! [T5] :
( p(north,north,south,north,T5)
=> p(south,south,south,north,take_wolf(T5)) )
& ! [T6] :
( p(south,south,north,south,T6)
=> p(north,north,north,south,take_wolf(T6)) )
& ! [T7] :
( p(north,north,north,south,T7)
=> p(south,south,north,south,take_wolf(T7)) )
& ! [X,Y,U] :
( p(south,X,south,Y,U)
=> p(north,X,north,Y,take_goat(U)) )
& ! [X1,Y1,V] :
( p(north,X1,north,Y1,V)
=> p(south,X1,south,Y1,take_goat(V)) )
& ! [T8] :
( p(south,north,south,south,T8)
=> p(north,north,south,north,take_cabbage(T8)) )
& ! [T9] :
( p(north,north,south,north,T9)
=> p(south,north,south,south,take_cabbage(T9)) )
& ! [U1] :
( p(south,south,north,south,U1)
=> p(north,south,north,north,take_cabbage(U1)) )
& ! [V1] :
( p(north,south,north,north,V1)
=> p(south,south,north,south,take_cabbage(V1)) ) )
=> ? [Z] : p(north,north,north,north,Z) ) ).
%--------------------------------------------------------------------------