TPTP Problem File: PUZ028-6.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : PUZ028-6 : TPTP v9.0.0. Released v2.0.0.
% Domain : Puzzles
% Problem : People at a party
% Version : [SETHEO] axioms : Especial.
% English : We can always choose 3 persons who are either familiar with
% each other or not familiar with each other, from 6 persons
% who meet at a party.
% Refs :
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.00 v3.1.0, 0.11 v2.7.0, 0.17 v2.6.0, 0.11 v2.5.0, 0.00 v2.4.0, 0.50 v2.3.0, 0.00 v2.2.0, 0.67 v2.1.0
% Syntax : Number of clauses : 41 ( 36 unt; 1 nHn; 41 RR)
% Number of literals : 51 ( 0 equ; 11 neg)
% Maximal clause size : 5 ( 1 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 4 ( 4 usr; 0 prp; 1-2 aty)
% Number of functors : 6 ( 6 usr; 6 con; 0-0 aty)
% Number of variables : 12 ( 0 sgn)
% SPC : CNF_UNS_EPR_NEQ_NHN
% Comments : This version is unsatisfiable because familiarity is symmetric.
%--------------------------------------------------------------------------
cnf(person_1,axiom,
person(n1) ).
cnf(person_2,axiom,
person(n2) ).
cnf(person_3,axiom,
person(n3) ).
cnf(person_4,axiom,
person(n4) ).
cnf(person_5,axiom,
person(n5) ).
cnf(person_6,axiom,
person(n6) ).
cnf(not_equal_1_2,axiom,
not_equal(n1,n2) ).
cnf(not_equal_1_3,axiom,
not_equal(n1,n3) ).
cnf(not_equal_1_4,axiom,
not_equal(n1,n4) ).
cnf(not_equal_1_5,axiom,
not_equal(n1,n5) ).
cnf(not_equal_1_6,axiom,
not_equal(n1,n6) ).
cnf(not_equal_2_1,axiom,
not_equal(n2,n1) ).
cnf(not_equal_2_3,axiom,
not_equal(n2,n3) ).
cnf(not_equal_2_4,axiom,
not_equal(n2,n4) ).
cnf(not_equal_2_5,axiom,
not_equal(n2,n5) ).
cnf(not_equal_2_6,axiom,
not_equal(n2,n6) ).
cnf(not_equal_3_1,axiom,
not_equal(n3,n1) ).
cnf(not_equal_3_2,axiom,
not_equal(n3,n2) ).
cnf(not_equal_3_4,axiom,
not_equal(n3,n4) ).
cnf(not_equal_3_5,axiom,
not_equal(n3,n5) ).
cnf(not_equal_3_6,axiom,
not_equal(n3,n6) ).
cnf(not_equal_4_1,axiom,
not_equal(n4,n1) ).
cnf(not_equal_4_2,axiom,
not_equal(n4,n2) ).
cnf(not_equal_4_3,axiom,
not_equal(n4,n3) ).
cnf(not_equal_4_5,axiom,
not_equal(n4,n5) ).
cnf(not_equal_4_6,axiom,
not_equal(n4,n6) ).
cnf(not_equal_5_1,axiom,
not_equal(n5,n1) ).
cnf(not_equal_5_2,axiom,
not_equal(n5,n2) ).
cnf(not_equal_5_3,axiom,
not_equal(n5,n3) ).
cnf(not_equal_5_4,axiom,
not_equal(n5,n4) ).
cnf(not_equal_5_6,axiom,
not_equal(n5,n6) ).
cnf(not_equal_6_1,axiom,
not_equal(n6,n1) ).
cnf(not_equal_6_2,axiom,
not_equal(n6,n2) ).
cnf(not_equal_6_3,axiom,
not_equal(n6,n3) ).
cnf(not_equal_6_4,axiom,
not_equal(n6,n4) ).
cnf(not_equal_6_5,axiom,
not_equal(n6,n5) ).
cnf(familiar_or_not,axiom,
( familiar(X,Y)
| not_familiar(X,Y)
| ~ person(X)
| ~ person(Y)
| ~ not_equal(X,Y) ) ).
cnf(symmetry_of_familiar,axiom,
( ~ familiar(X1,X2)
| familiar(X2,X1) ) ).
cnf(symmetry_of_not_familiar,axiom,
( ~ not_familiar(X1,X2)
| not_familiar(X2,X1) ) ).
cnf(three_familiar,negated_conjecture,
( ~ familiar(X1,X2)
| ~ familiar(X2,X3)
| ~ familiar(X3,X1) ) ).
cnf(three_not_familiar,negated_conjecture,
( ~ not_familiar(X1,X2)
| ~ not_familiar(X2,X3)
| ~ not_familiar(X3,X1) ) ).
%--------------------------------------------------------------------------