TPTP Problem File: PUZ024-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : PUZ024-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Puzzles
% Problem : Knights and Knaves #31
% Version : Especial.
% English : There is an island with exactly two types of people -
% truthtellers who always tell the truth and liars who always lie.
% There are a group of three people, A, B, and C on the island. A
% and B make the following statements. A: All of us are liars;
% B: Exactly one of us is a truthteller. What are A, B, and C?
% Answer: A is a liar, B is a truthteller, and C is a liar.
% Refs : [Smu78] Smullyan (1978), What is the Name of this Book?
% Source : [ANL]
% Names : Problem 31 [Smu78]
% : tandl31.ver1.in [ANL]
% Status : Unsatisfiable
% Rating : 0.00 v6.3.0, 0.14 v6.2.0, 0.00 v2.0.0
% Syntax : Number of clauses : 20 ( 6 unt; 6 nHn; 19 RR)
% Number of literals : 60 ( 0 equ; 37 neg)
% Maximal clause size : 5 ( 3 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 2 ( 2 usr; 0 prp; 1-3 aty)
% Number of functors : 8 ( 8 usr; 5 con; 0-2 aty)
% Number of variables : 35 ( 3 sgn)
% SPC : CNF_UNS_RFO_NEQ_NHN
% Comments :
%--------------------------------------------------------------------------
%----Include axioms for truthtellers and liars
include('Axioms/PUZ002-0.ax').
%--------------------------------------------------------------------------
%----The next 6 clauses define what is meant by exactly one
%----is a truthteller.
cnf(one_says_one_truthteller,axiom,
( ~ a_truth(says(X,one_truthteller))
| ~ people(X,Y,Z)
| ~ a_truth(truthteller(X))
| ~ a_truth(truthteller(Y))
| ~ a_truth(truthteller(Z)) ) ).
cnf(one_is_the_truth_teller,axiom,
( ~ a_truth(one_truthteller)
| ~ people(X,Y,Z)
| a_truth(truthteller(X))
| a_truth(truthteller(Y))
| a_truth(truthteller(Z)) ) ).
cnf(one_is_not_the_truthteller,axiom,
( ~ a_truth(one_truthteller)
| ~ people(X,Y,Z)
| ~ a_truth(truthteller(Y))
| ~ a_truth(truthteller(X))
| ~ a_truth(truthteller(Z)) ) ).
cnf(one_truthteller_two_liars,axiom,
( ~ a_truth(one_truthteller)
| ~ people(X,Y,Z)
| ~ a_truth(liar(X))
| ~ a_truth(truthteller(Y))
| a_truth(liar(Z)) ) ).
cnf(two_truthtellers,axiom,
( a_truth(one_truthteller)
| ~ people(X,Y,Z)
| ~ a_truth(liar(X))
| ~ a_truth(truthteller(Y))
| a_truth(truthteller(Z)) ) ).
cnf(three_liars,axiom,
( a_truth(one_truthteller)
| ~ people(X,Y,Z)
| ~ a_truth(liar(X))
| ~ a_truth(liar(Y))
| a_truth(liar(Z)) ) ).
%----If x says that 'all of us' are liars then, all the persons may
%----be liars.
cnf(speaker_is_lying,axiom,
( ~ a_truth(says(X,all_are_liars))
| ~ people(X,Y,Z)
| ~ a_truth(truthteller(X)) ) ).
cnf(all_truthtellers,axiom,
( a_truth(all_are_liars)
| ~ people(X,Y,Z)
| a_truth(truthteller(X))
| a_truth(truthteller(Y))
| a_truth(truthteller(Z)) ) ).
cnf(b_c_a_people,hypothesis,
people(b,c,a) ).
cnf(a_c_b_people,hypothesis,
people(a,c,b) ).
cnf(c_b_a_people,hypothesis,
people(c,b,a) ).
cnf(a_says_all_are_liars,hypothesis,
a_truth(says(a,all_are_liars)) ).
cnf(b_says_one_truthteller,hypothesis,
a_truth(says(b,one_truthteller)) ).
%----This is an honest way of doing this. A simpler version could simply
%----prove that A and C are a liars, and B is a truthteller
cnf(prove_there_is_a_truthteller,negated_conjecture,
~ a_truth(truthteller(Truthteller)) ).
%--------------------------------------------------------------------------