TPTP Problem File: PUZ003-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : PUZ003-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Puzzles
% Problem : The Barber Puzzle
% Version : Especial.
% English : There is a barbers' club that obeys the following three
% conditions:
% (1) If any member A has shaved any other member B - whether
% himself or another - then all members have shaved A,
% though not necessarily at the same time.
% (2) Four of the members are named Guido, Lorenzo, Petrucio,
% and Cesare.
% (3) Guido has shaved Cesare.
% Prove Petrucio has shaved Lorenzo
% Refs :
% Source : [ANL]
% Names : barber.ver1.in [ANL]
% Status : Unsatisfiable
% Rating : 0.00 v2.0.0
% Syntax : Number of clauses : 8 ( 6 unt; 0 nHn; 8 RR)
% Number of literals : 13 ( 0 equ; 6 neg)
% Maximal clause size : 4 ( 1 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 2 ( 2 usr; 0 prp; 1-2 aty)
% Number of functors : 5 ( 5 usr; 5 con; 0-0 aty)
% Number of variables : 4 ( 0 sgn)
% SPC : CNF_UNS_EPR_NEQ_HRN
% Comments :
%--------------------------------------------------------------------------
cnf(one_shaved_then_all_shaved,axiom,
( ~ member(X)
| ~ member(Y)
| ~ shaved(X,Y)
| shaved(members,X) ) ).
cnf(all_shaved_then_one_shaved,axiom,
( ~ shaved(members,X)
| ~ member(Y)
| shaved(Y,X) ) ).
cnf(guido,hypothesis,
member(guido) ).
cnf(lorenzo,hypothesis,
member(lorenzo) ).
cnf(petruchio,hypothesis,
member(petruchio) ).
cnf(cesare,hypothesis,
member(cesare) ).
cnf(guido_has_shaved_cesare,hypothesis,
shaved(guido,cesare) ).
cnf(prove_petruchio_has_shaved_lorenzo,negated_conjecture,
~ shaved(petruchio,lorenzo) ).
%--------------------------------------------------------------------------