TPTP Problem File: PRO033_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : PRO033_1 : TPTP v9.0.0. Released v9.0.0.
% Domain : Processes
% Problem : No 3 true/false in a row
% Version : Especial.
% English :
% Refs : [PB+23] Parsert et al. (2023), Experiments on Infinite Model F
% : [Kal23] Kaliszyk (2023), Email to Geoff Sutcliffe
% Source : [Kal23]
% Names : infin_pattern [Kal23]
% Status : Satisfiable
% Rating : 1.00 v9.0.0
% Syntax : Number of formulae : 3 ( 0 unt; 1 typ; 0 def)
% Number of atoms : 6 ( 0 equ)
% Maximal formula atoms : 3 ( 3 avg)
% Number of connectives : 7 ( 3 ~; 4 |; 0 &)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 5 avg)
% Maximal term depth : 2 ( 1 avg)
% Number arithmetic : 10 ( 0 atm; 4 fun; 4 num; 2 var)
% Number of types : 2 ( 0 usr; 1 ari)
% Number of type conns : 1 ( 1 >; 0 *; 0 +; 0 <<)
% Number of predicates : 1 ( 1 usr; 0 prp; 1-1 aty)
% Number of functors : 3 ( 0 usr; 2 con; 0-2 aty)
% Number of variables : 2 (; 2 !; 0 ?; 2 :)
% SPC : TF0_SAT_NEQ_ARI
% Comments : UFLIA logic
%------------------------------------------------------------------------------
tff(f,type,
f: $int > $o ).
%----No 3 false's in a row
%----∀ x:Int (f(x) ∨ f((1 + x)) ∨ f((2 + x)))
tff(formula_1,axiom,
! [X: $int] :
( f(X)
| f($sum(1,X))
| f($sum(2,X)) ) ).
%----No 3 true's in a row
%----∀ x:Int (¬f(x) ∨ ¬f((1 + x)) ∨ ¬f((2 + x)))
tff(formula_2,axiom,
! [X: $int] :
( ~ f(X)
| ~ f($sum(1,X))
| ~ f($sum(2,X)) ) ).
%------------------------------------------------------------------------------