TPTP Problem File: PRO032_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : PRO032_1 : TPTP v9.0.0. Released v9.0.0.
% Domain : Processes
% Problem : f flips
% Version : Especial.
% English :
% Refs : [PB+23] Parsert et al. (2023), Experiments on Infinite Model F
% : [Kal23] Kaliszyk (2023), Email to Geoff Sutcliffe
% Source : [Kal23]
% Names : infin_flip [Kal23]
% Status : Satisfiable
% Rating : 1.00 v9.0.0
% Syntax : Number of formulae : 2 ( 0 unt; 1 typ; 0 def)
% Number of atoms : 2 ( 0 equ)
% Maximal formula atoms : 2 ( 2 avg)
% Number of connectives : 2 ( 1 ~; 0 |; 0 &)
% ( 1 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 4 ( 4 avg)
% Maximal term depth : 2 ( 1 avg)
% Number arithmetic : 3 ( 0 atm; 1 fun; 1 num; 1 var)
% Number of types : 2 ( 0 usr; 1 ari)
% Number of type conns : 1 ( 1 >; 0 *; 0 +; 0 <<)
% Number of predicates : 1 ( 1 usr; 0 prp; 1-1 aty)
% Number of functors : 2 ( 0 usr; 1 con; 0-2 aty)
% Number of variables : 1 (; 1 !; 0 ?; 1 :)
% SPC : TF0_SAT_NEQ_ARI
% Comments : UFLIA logic
%------------------------------------------------------------------------------
tff(f,type,
f: $int > $o ).
%----∀ x:Int ¬(f(x) = f((x - 1)))
tff(formula_1,axiom,
! [X: $int] :
~ ( f(X)
<=> f($difference(X,1)) ) ).
%------------------------------------------------------------------------------