TPTP Problem File: PRO031_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : PRO031_1 : TPTP v9.0.0. Released v9.0.0.
% Domain : Processes
% Problem : Elevators never starve II
% Version : Especial.
% English :
% Refs : [PB+23] Parsert et al. (2023), Experiments on Infinite Model F
% : [Kal23] Kaliszyk (2023), Email to Geoff Sutcliffe
% Source : [Kal23]
% Names : infin4 [Kal23]
% Status : Satisfiable
% Rating : 1.00 v9.0.0
% Syntax : Number of formulae : 9 ( 2 unt; 5 typ; 0 def)
% Number of atoms : 8 ( 8 equ)
% Maximal formula atoms : 3 ( 2 avg)
% Number of connectives : 9 ( 5 ~; 2 |; 2 &)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 4 ( 4 avg)
% Maximal term depth : 3 ( 1 avg)
% Number arithmetic : 5 ( 0 atm; 1 fun; 1 num; 3 var)
% Number of types : 2 ( 1 usr; 1 ari)
% Number of type conns : 1 ( 1 >; 0 *; 0 +; 0 <<)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 6 ( 4 usr; 4 con; 0-2 aty)
% Number of variables : 3 (; 3 !; 0 ?; 3 :)
% SPC : TF0_SAT_EQU_ARI
% Comments : UFLIA logic
%------------------------------------------------------------------------------
tff('S',type,
'S': $tType ).
tff(c,type,
c: 'S' ).
%----f(t) is an elevator request in time t, f(t) is the floor
tff(f,type,
f: $int > 'S' ).
tff(b,type,
b: 'S' ).
tff(a,type,
a: 'S' ).
%----3 distinct floors
%----(a ≠ b ≠ c)
tff(formula_1,axiom,
( ( a != b )
& ( a != c )
& ( b != c ) ) ).
%----∀ x:Int ((f(x) = a) ∨ (f(x) = b) ∨ (f(x) = c))
tff(formula_2,axiom,
! [X: $int] :
( ( f(X) = a )
| ( f(X) = b )
| ( f(X) = c ) ) ).
%----Ignore repeated requests
%----∀ x:Int ¬(f(x) = f((x - 1)))
tff(formula_3,axiom,
! [X: $int] : ( f(X) != f($difference(X,1)) ) ).
%----Floor zero is never reached (starvation)
%----∀ x:Int ¬(f(x) = a)
tff(formula_4,axiom,
! [X: $int] : ( f(X) != a ) ).
%------------------------------------------------------------------------------