TPTP Problem File: PRO030_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : PRO030_1 : TPTP v9.0.0. Released v9.0.0.
% Domain : Processes
% Problem : Elevators never starve I
% Version : Especial.
% English :
% Refs : [PB+23] Parsert et al. (2023), Experiments on Infinite Model F
% : [Kal23] Kaliszyk (2023), Email to Geoff Sutcliffe
% Source : [Kal23]
% Names : infin3 [Kal23]
% Status : Satisfiable
% Rating : 1.00 v9.0.0
% Syntax : Number of formulae : 11 ( 1 unt; 3 typ; 0 def)
% Number of atoms : 16 ( 0 equ)
% Maximal formula atoms : 3 ( 2 avg)
% Number of connectives : 15 ( 7 ~; 2 |; 6 &)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 4 ( 4 avg)
% Maximal term depth : 2 ( 1 avg)
% Number arithmetic : 14 ( 0 atm; 3 fun; 3 num; 8 var)
% Number of types : 2 ( 0 usr; 1 ari)
% Number of type conns : 3 ( 3 >; 0 *; 0 +; 0 <<)
% Number of predicates : 3 ( 3 usr; 0 prp; 1-1 aty)
% Number of functors : 2 ( 0 usr; 1 con; 0-2 aty)
% Number of variables : 8 (; 8 !; 0 ?; 8 :)
% SPC : TF0_SAT_NEQ_ARI
% Comments : UFLIA logic
%------------------------------------------------------------------------------
%----atN elevator is at floor N
tff(at0,type,
at0: $int > $o ).
tff(at1,type,
at1: $int > $o ).
tff(at2,type,
at2: $int > $o ).
%----Elevator is at one and only one floor at any point in time
%----∀ t:Int (at0(t) ∨ at1(t) ∨ at2(t))
tff(formula_1,axiom,
! [T: $int] :
( at0(T)
| at1(T)
| at2(T) ) ).
%----∀ t:Int ¬(at0(t) ∧ at1(t))
tff(formula_2,axiom,
! [T: $int] :
~ ( at0(T)
& at1(T) ) ).
%----∀ t:Int ¬(at0(t) ∧ at2(t))
tff(formula_3,axiom,
! [T: $int] :
~ ( at0(T)
& at2(T) ) ).
%----∀ t:Int ¬(at1(t) ∧ at2(t))
tff(formula_4,axiom,
! [T: $int] :
~ ( at1(T)
& at2(T) ) ).
%----Ignore repeated requests
%----∀ t:Int ¬(at0(t) ∧ at0((t + 1)))
tff(formula_5,axiom,
! [T: $int] :
~ ( at0(T)
& at0($sum(T,1)) ) ).
%----∀ t:Int ¬(at1(t) ∧ at1((t + 1)))
tff(formula_6,axiom,
! [T: $int] :
~ ( at1(T)
& at1($sum(T,1)) ) ).
%----∀ t:Int ¬(at2(t) ∧ at2((t + 1)))
tff(formula_7,axiom,
! [T: $int] :
~ ( at2(T)
& at2($sum(T,1)) ) ).
%----Floor zero is never reached (starvation)
%----∀ t:Int ¬at0(t)
tff(formula_8,axiom,
! [T: $int] : ~ at0(T) ).
%------------------------------------------------------------------------------