TPTP Problem File: PLA059_1.005.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : PLA059_1.005 : TPTP v9.0.0. Released v9.0.0.
% Domain : Planning
% Problem : Path from the entry to the exit of a labyrinth 5
% Version : Especial.
% English : The formula is the path from the entry to the exit of a
% labyrinth. It makes no difference whether one starts at the
% entry or at the exit.
% Refs : [BHS00] Balsiger et al. (2000), A Benchmark Method for the Pro
% : [NH+22] Nalon et al. (2022), Local Reductions for the Modal Cu
% : [Nal22] Nalon (2022), Email to Geoff Sutcliffe
% : [NH+23] Nalon et al. (2023), Buy One Get 14 Free: Evaluating L
% Source : [Nal22]
% Names : s4_path_n.0005 [Nal22]
% Status : CounterSatisfiable
% Rating : 0.33 v9.0.0
% Syntax : Number of formulae : 38 ( 0 unt; 37 typ; 0 def)
% Number of atoms : 200 ( 0 equ)
% Maximal formula atoms : 200 ( 200 avg)
% Number of connectives : 598 ( 82 ~; 123 |; 76 &)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% ( 317 {.}; 0 {#})
% Maximal formula depth : 130 ( 130 avg)
% Maximal term depth : 0 ( 0 avg)
% Number of types : 1 ( 0 usr)
% Number of type conns : 0 ( 0 >; 0 *; 0 +; 0 <<)
% Number of predicates : 37 ( 37 usr; 37 prp; 0-0 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 0 (; 0 !; 0 ?; 0 :)
% SPC : NX0_CSA_PRP_NEQ_NAR
% Comments :
%------------------------------------------------------------------------------
tff('s4_path_n.0005',logic,
$modal ==
[ $modalities == $modal_system_S4 ] ).
tff(false_decl,type,
false: $o ).
tff(p11_decl,type,
p11: $o ).
tff(p12_decl,type,
p12: $o ).
tff(p13_decl,type,
p13: $o ).
tff(p14_decl,type,
p14: $o ).
tff(p15_decl,type,
p15: $o ).
tff(p16_decl,type,
p16: $o ).
tff(p21_decl,type,
p21: $o ).
tff(p22_decl,type,
p22: $o ).
tff(p23_decl,type,
p23: $o ).
tff(p24_decl,type,
p24: $o ).
tff(p25_decl,type,
p25: $o ).
tff(p26_decl,type,
p26: $o ).
tff(p31_decl,type,
p31: $o ).
tff(p32_decl,type,
p32: $o ).
tff(p33_decl,type,
p33: $o ).
tff(p34_decl,type,
p34: $o ).
tff(p35_decl,type,
p35: $o ).
tff(p36_decl,type,
p36: $o ).
tff(p41_decl,type,
p41: $o ).
tff(p42_decl,type,
p42: $o ).
tff(p43_decl,type,
p43: $o ).
tff(p44_decl,type,
p44: $o ).
tff(p45_decl,type,
p45: $o ).
tff(p46_decl,type,
p46: $o ).
tff(p51_decl,type,
p51: $o ).
tff(p52_decl,type,
p52: $o ).
tff(p53_decl,type,
p53: $o ).
tff(p54_decl,type,
p54: $o ).
tff(p55_decl,type,
p55: $o ).
tff(p56_decl,type,
p56: $o ).
tff(p61_decl,type,
p61: $o ).
tff(p62_decl,type,
p62: $o ).
tff(p63_decl,type,
p63: $o ).
tff(p64_decl,type,
p64: $o ).
tff(p65_decl,type,
p65: $o ).
tff(p66_decl,type,
p66: $o ).
tff(prove,conjecture,
~ ~ ( [.] [.] p11
| [.] [.] p12
| [.] [.] p13
| [.] [.] p15
| <.> ( ~ p11
& [.] p23 )
| <.> ( ~ p11
& [.] p25 )
| false
| <.> ( ~ p12
& [.] p21 )
| false
| <.> ( ~ p13
& [.] p23 )
| <.> ( ~ p13
& [.] p25 )
| false
| false
| false
| <.> ( ~ p15
& [.] p23 )
| <.> ( ~ p15
& [.] p25 )
| false
| false
| false
| <.> <.> ( ~ p21
& [.] p31 )
| <.> <.> ( ~ p21
& [.] p33 )
| <.> <.> ( ~ p21
& [.] p36 )
| <.> <.> ( ~ p21
& [.] p35 )
| false
| false
| <.> ( ~ p14
& [.] p22 )
| <.> ( ~ p16
& [.] p22 )
| <.> <.> ( ~ p23
& [.] p31 )
| <.> <.> ( ~ p23
& [.] p33 )
| <.> <.> ( ~ p23
& [.] p35 )
| false
| false
| <.> ( ~ p14
& [.] p24 )
| <.> ( ~ p16
& [.] p24 )
| <.> <.> ( ~ p25
& [.] p31 )
| <.> <.> ( ~ p25
& [.] p33 )
| <.> <.> ( ~ p25
& [.] p35 )
| false
| false
| <.> ( ~ p14
& [.] p26 )
| <.> ( ~ p16
& [.] p26 )
| <.> <.> <.> ( ~ p31
& [.] p41 )
| <.> <.> <.> ( ~ p31
& [.] p45 )
| false
| false
| <.> <.> ( ~ p22
& [.] p32 )
| <.> <.> ( ~ p24
& [.] p32 )
| <.> <.> ( ~ p26
& [.] p32 )
| <.> <.> <.> ( ~ p33
& [.] p41 )
| <.> <.> <.> ( ~ p33
& [.] p45 )
| false
| false
| <.> <.> ( ~ p22
& [.] p34 )
| <.> <.> ( ~ p24
& [.] p34 )
| <.> <.> ( ~ p26
& [.] p34 )
| <.> <.> <.> ( ~ p35
& [.] p41 )
| <.> <.> <.> ( ~ p35
& [.] p45 )
| false
| false
| <.> <.> ( ~ p22
& [.] p36 )
| <.> <.> ( ~ p24
& [.] p36 )
| <.> <.> ( ~ p26
& [.] p36 )
| <.> <.> <.> <.> ( ~ p41
& [.] p51 )
| <.> <.> <.> <.> ( ~ p41
& [.] p53 )
| <.> <.> <.> <.> ( ~ p41
& [.] p55 )
| false
| false
| <.> <.> <.> ( ~ p32
& [.] p42 )
| <.> <.> <.> ( ~ p34
& [.] p42 )
| <.> <.> <.> <.> ( ~ p43
& [.] p51 )
| <.> <.> <.> <.> ( ~ p43
& [.] p53 )
| <.> <.> <.> <.> ( ~ p43
& [.] p56 )
| <.> <.> <.> <.> ( ~ p43
& [.] p55 )
| false
| false
| <.> <.> <.> ( ~ p32
& [.] p44 )
| <.> <.> <.> ( ~ p34
& [.] p44 )
| <.> <.> <.> <.> ( ~ p45
& [.] p51 )
| <.> <.> <.> <.> ( ~ p45
& [.] p53 )
| <.> <.> <.> <.> ( ~ p45
& [.] p55 )
| false
| false
| <.> <.> <.> ( ~ p32
& [.] p46 )
| <.> <.> <.> ( ~ p34
& [.] p46 )
| <.> <.> <.> <.> <.> ( ~ p51
& [.] p61 )
| <.> <.> <.> <.> <.> ( ~ p51
& [.] p65 )
| false
| false
| <.> <.> <.> <.> ( ~ p42
& [.] p52 )
| <.> <.> <.> <.> ( ~ p44
& [.] p52 )
| <.> <.> <.> <.> ( ~ p46
& [.] p52 )
| <.> <.> <.> <.> <.> ( ~ p53
& [.] p61 )
| <.> <.> <.> <.> <.> ( ~ p53
& [.] p65 )
| false
| false
| <.> <.> <.> <.> ( ~ p42
& [.] p54 )
| <.> <.> <.> <.> ( ~ p44
& [.] p54 )
| <.> <.> <.> <.> ( ~ p46
& [.] p54 )
| <.> <.> <.> <.> <.> ( ~ p55
& [.] p61 )
| <.> <.> <.> <.> <.> ( ~ p55
& [.] p65 )
| false
| <.> <.> <.> <.> <.> ( ~ p56
& [.] p63 )
| <.> <.> <.> <.> ( ~ p42
& [.] p56 )
| <.> <.> <.> <.> ( ~ p44
& [.] p56 )
| <.> <.> <.> <.> ( ~ p46
& [.] p56 )
| false
| false
| false
| <.> <.> <.> <.> <.> ( ~ p52
& [.] p62 )
| <.> <.> <.> <.> <.> ( ~ p54
& [.] p62 )
| false
| false
| false
| <.> <.> <.> <.> <.> ( ~ p52
& [.] p64 )
| <.> <.> <.> <.> <.> ( ~ p54
& [.] p64 )
| false
| false
| false
| <.> <.> <.> <.> <.> ( ~ p52
& [.] p66 )
| <.> <.> <.> <.> <.> ( ~ p54
& [.] p66 )
| <.> ( <.> ~ p62
| <.> ~ p64
| <.> ~ p63
| <.> ~ p66 ) ) ).
%------------------------------------------------------------------------------