TPTP Problem File: PLA059_1.001.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : PLA059_1.001 : TPTP v9.0.0. Released v9.0.0.
% Domain : Planning
% Problem : Path from the entry to the exit of a labyrinth 1
% Version : Especial.
% English : The formula is the path from the entry to the exit of a
% labyrinth. It makes no difference whether one starts at the
% entry or at the exit.
% Refs : [BHS00] Balsiger et al. (2000), A Benchmark Method for the Pro
% : [NH+22] Nalon et al. (2022), Local Reductions for the Modal Cu
% : [Nal22] Nalon (2022), Email to Geoff Sutcliffe
% : [NH+23] Nalon et al. (2023), Buy One Get 14 Free: Evaluating L
% Source : [Nal22]
% Names : s4_path_n.0001 [Nal22]
% Status : CounterSatisfiable
% Rating : 0.33 v9.0.0
% Syntax : Number of formulae : 14 ( 0 unt; 13 typ; 0 def)
% Number of atoms : 50 ( 0 equ)
% Maximal formula atoms : 50 ( 50 avg)
% Number of connectives : 104 ( 18 ~; 37 |; 12 &)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% ( 37 {.}; 0 {#})
% Maximal formula depth : 43 ( 43 avg)
% Maximal term depth : 0 ( 0 avg)
% Number of types : 1 ( 0 usr)
% Number of type conns : 0 ( 0 >; 0 *; 0 +; 0 <<)
% Number of predicates : 13 ( 13 usr; 13 prp; 0-0 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 0 (; 0 !; 0 ?; 0 :)
% SPC : NX0_CSA_PRP_NEQ_NAR
% Comments :
%------------------------------------------------------------------------------
tff('s4_path_n.0001',logic,
$modal ==
[ $modalities == $modal_system_S4 ] ).
tff(false_decl,type,
false: $o ).
tff(p11_decl,type,
p11: $o ).
tff(p12_decl,type,
p12: $o ).
tff(p13_decl,type,
p13: $o ).
tff(p14_decl,type,
p14: $o ).
tff(p15_decl,type,
p15: $o ).
tff(p16_decl,type,
p16: $o ).
tff(p21_decl,type,
p21: $o ).
tff(p22_decl,type,
p22: $o ).
tff(p23_decl,type,
p23: $o ).
tff(p24_decl,type,
p24: $o ).
tff(p25_decl,type,
p25: $o ).
tff(p26_decl,type,
p26: $o ).
tff(prove,conjecture,
~ ~ ( [.] [.] p11
| [.] [.] p12
| [.] [.] p13
| [.] [.] p15
| <.> ( ~ p11
& [.] p21 )
| <.> ( ~ p11
& [.] p23 )
| false
| false
| false
| <.> ( ~ p13
& [.] p21 )
| <.> ( ~ p13
& [.] p23 )
| false
| false
| false
| <.> ( ~ p15
& [.] p21 )
| <.> ( ~ p15
& [.] p23 )
| false
| false
| false
| false
| false
| false
| <.> ( ~ p14
& [.] p22 )
| <.> ( ~ p16
& [.] p22 )
| false
| false
| false
| <.> ( ~ p14
& [.] p24 )
| <.> ( ~ p16
& [.] p24 )
| false
| false
| false
| <.> ( ~ p14
& [.] p26 )
| <.> ( ~ p16
& [.] p26 )
| <.> ( <.> ~ p22
| <.> ~ p24
| <.> ~ p25
| <.> ~ p26 ) ) ).
%------------------------------------------------------------------------------