TPTP Problem File: PLA052_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : PLA052_1 : TPTP v9.0.0. Released v7.3.0.
% Domain : Planning
% Problem : Expected number of steps to proof of optimality - toughest
% Version : Especial.
% English : Number of fitness values and total number of solns unconstrained.
% Number of solns at each fitness level not given but increases with
% distance from optimum. Initial dist anything up to half the number
% of fitness values. General Neighbour Similar Fitness constraint.
% Refs : [Wal18] Wallace (2018), Email to Geoff Sutcliffe
% Source : [Wal18]
% Names : toughest-local-search-thm-jun17 [Wal18]
% Status : Theorem
% Rating : 1.00 v7.3.0
% Syntax : Number of formulae : 30 ( 9 unt; 11 typ; 0 def)
% Number of atoms : 34 ( 11 equ)
% Maximal formula atoms : 3 ( 1 avg)
% Number of connectives : 15 ( 0 ~; 0 |; 7 &)
% ( 0 <=>; 8 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 2 avg)
% Maximal term depth : 7 ( 2 avg)
% Number arithmetic : 105 ( 23 atm; 35 fun; 36 num; 11 var)
% Number of types : 2 ( 0 usr; 2 ari)
% Number of type conns : 10 ( 8 >; 2 *; 0 +; 0 <<)
% Number of predicates : 2 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 21 ( 11 usr; 9 con; 0-2 aty)
% Number of variables : 11 ( 11 !; 0 ?; 11 :)
% SPC : TF0_THM_EQU_ARI
% Comments :
%------------------------------------------------------------------------------
tff(imp,type,
imp: $int > $real ).
tff(recexp,type,
recexp: $int > $real ).
tff(mysumlk,type,
mysumlk: $int > $int ).
tff(mysumdlow,type,
mysumdlow: ( $int * $int ) > $real ).
tff(mysumr,type,
mysumr: ( $int * $int ) > $real ).
tff(lksum,type,
lksum: $int > $int ).
tff(problen,type,
problen: $int ).
tff(probsize,type,
probsize: $int ).
tff(lk,type,
lk: $int > $int ).
tff(d,type,
d: $int > $real ).
tff(c0,type,
c0: $int ).
tff(tougher_local_search,conjecture,
( $lesseq($to_real(probsize),recexp(c0))
=> $lesseq(d(1),1.0) ) ).
tff(problen_0,axiom,
$lesseq(2,problen) ).
tff(probsize_0,axiom,
$lesseq($product(problen,problen),probsize) ).
tff(c0_a,axiom,
( $lesseq(0,c0)
& $lesseq($product(2,c0),problen) ) ).
tff(lk_0,axiom,
$lesseq(1,lk(0)) ).
tff(lk_n,axiom,
! [K: $int] :
( ( $lesseq(1,K)
& $lesseq(K,problen) )
=> $lesseq(lk($difference(K,1)),lk(K)) ) ).
tff(d_0,axiom,
( ( d(0) = d(1) )
& $lesseq(0.5,d(1)) ) ).
tff(d_n,axiom,
! [K: $int] :
( ( $lesseq(1,K)
& $lesseq(K,c0) )
=> $lesseq(d(K),d($difference(K,1))) ) ).
tff(msumdlow_1,axiom,
! [C: $int] : ( mysumdlow(1,C) = $product(d(1),$to_real(lk($difference(C,1)))) ) ).
tff(msumdlow_n,axiom,
! [K: $int,C: $int] :
( ( $lesseq(2,K)
& $lesseq(K,c0) )
=> ( mysumdlow(K,C) = $sum(mysumdlow($difference(K,1),C),$product(d(K),$to_real(lk($difference(C,K))))) ) ) ).
tff(imp_0,axiom,
imp(0) = 0.0 ).
tff(imp_n,axiom,
! [C: $int] :
( $lesseq(1,C)
=> ( $product($to_real(probsize),imp(C)) = mysumdlow(C,C) ) ) ).
tff(recexp_0,axiom,
recexp(0) = 0.0 ).
tff(recexp_n,axiom,
! [C: $int] :
( $lesseq(1,C)
=> ( $product(imp(C),$product($to_real(probsize),recexp(C))) = $sum($to_real(probsize),mysumr(C,C)) ) ) ).
tff(mysumlk_0,axiom,
mysumlk(0) = lk(0) ).
tff(mysumlk_n,axiom,
! [K: $int] :
( ( $lesseq(1,K)
& $lesseq(K,problen) )
=> ( mysumlk(K) = $sum(lk(K),mysumlk($difference(K,1))) ) ) ).
tff(mysumlk_tot,axiom,
$lesseq($product($to_real(mysumlk(problen)),d(1)),$to_real(probsize)) ).
tff(mysumr_1,axiom,
! [C: $int] : ( mysumr(1,C) = $product(d(1),$to_real(lk($difference(C,1)))) ) ).
tff(mysumr_n,axiom,
! [C: $int,K: $int] :
( ( $lesseq(2,K)
& $lesseq(K,C) )
=> ( mysumr(K,C) = $sum($product(d(K),$product(recexp($difference(C,K)),$to_real(lk($difference(C,K))))),mysumr($difference(K,1),C)) ) ) ).
%------------------------------------------------------------------------------