TPTP Problem File: PLA050_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : PLA050_1 : TPTP v9.0.0. Released v7.3.0.
% Domain : Planning
% Problem : Expected number of steps to proof of optimality - thm-4
% Version : Especial.
% English : Number of fitness values and total number of solns unconstrained.
% Number of solns at each fitness level not given but increases with
% distance from optimum. Initial distance anything up to half the
% number of fitness values. Assume only inc1 and dec1 have increased
% probability.
% Refs : [Wal18] Wallace (2018), Email to Geoff Sutcliffe
% Source : [Wal18]
% Names : ls-thm-4 [Wal18]
% Status : Theorem
% Rating : 0.62 v9.0.0, 0.75 v7.5.0, 0.90 v7.4.0, 0.88 v7.3.0
% Syntax : Number of formulae : 28 ( 10 unt; 10 typ; 0 def)
% Number of atoms : 36 ( 17 equ)
% Maximal formula atoms : 9 ( 1 avg)
% Number of connectives : 18 ( 0 ~; 0 |; 10 &)
% ( 0 <=>; 8 =>; 0 <=; 0 <~>)
% Maximal formula depth : 13 ( 4 avg)
% Maximal term depth : 7 ( 2 avg)
% Number arithmetic : 142 ( 19 atm; 49 fun; 40 num; 34 var)
% Number of types : 2 ( 0 usr; 2 ari)
% Number of type conns : 20 ( 8 >; 12 *; 0 +; 0 <<)
% Number of predicates : 2 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 21 ( 10 usr; 9 con; 0-4 aty)
% Number of variables : 34 ( 34 !; 0 ?; 34 :)
% SPC : TF0_THM_EQU_ARI
% Comments :
%------------------------------------------------------------------------------
tff(lk,type,
lk: $int > $int ).
tff(ns,type,
ns: $int > $int ).
tff(dc_type,type,
dc: ( $real * $int * $int ) > $real ).
tff(imp,type,
imp: ( $real * $int * $int ) > $real ).
tff(recexp,type,
recexp: ( $real * $int * $int ) > $real ).
tff(mylk,type,
mylk: $int > $int ).
tff(mysumr,type,
mysumr: ( $real * $int * $int * $int ) > $real ).
tff(mysump,type,
mysump: ( $real * $int * $int * $int ) > $real ).
tff(problen,type,
problen: $int ).
tff(probsize,type,
probsize: $int ).
tff(tougher_local_search,conjecture,
! [S: $real,C: $int,Problen: $int,Probsize: $int] :
( ( $lesseq(2,Problen)
& ( problen = Problen )
& $lesseq($product(Problen,Problen),Probsize)
& ( probsize = Probsize )
& $lesseq($product(C,2),problen)
& $lesseq($to_real(probsize),recexp(S,probsize,C))
& $lesseq(0.9,S)
& $lesseq(S,10.0) )
=> $lesseq(S,1.0) ) ).
tff(lk_0,axiom,
lk(0) = 1 ).
tff(lk_n,axiom,
! [K: $int] :
( ( $lesseq(1,K)
& $lesseq(K,problen) )
=> $lesseq(lk($difference(K,1)),lk(K)) ) ).
tff(ns_0,axiom,
ns(0) = $sum(lk(0),lk(1)) ).
tff(ns_pl,axiom,
ns(problen) = $sum(lk($difference(problen,1)),lk(problen)) ).
tff(ns_n,axiom,
! [K: $int] :
( ( $lesseq(1,K)
& $lesseq(K,$difference(problen,1)) )
=> ( ns(K) = $sum($sum(lk($difference(K,1)),lk(K)),lk($sum(K,1))) ) ) ).
tff(dc,axiom,
! [D: $real,T: $int,C: $int] : ( $product(dc(D,T,C),$to_real($difference(T,ns(C)))) = $difference($to_real(T),$product(D,$to_real(ns(C)))) ) ).
tff(imp_0,axiom,
! [D: $real,T: $int] : ( imp(D,T,0) = 0.0 ) ).
tff(imp_n,axiom,
! [D: $real,T: $int,C: $int] :
( $lesseq(1,C)
=> ( $product($to_real(T),imp(D,T,C)) = $sum($product(D,$to_real(lk($difference(C,1)))),mysump(D,T,C,$difference(C,2))) ) ) ).
tff(mysump_0,axiom,
! [D: $real,T: $int,C: $int] : ( mysump(D,T,C,0) = 0.0 ) ).
tff(mysump_n,axiom,
! [D: $real,T: $int,C: $int,K: $int] :
( $lesseq(1,K)
=> ( mysump(D,T,C,K) = $sum($product(dc(D,T,C),$to_real(lk(K))),mysump(D,T,C,$difference(K,1))) ) ) ).
tff(recexp_0,axiom,
! [D: $real,T: $int] : ( recexp(D,T,0) = 0.0 ) ).
tff(recexp_n,axiom,
! [D: $real,T: $int,C: $int] :
( $lesseq(1,C)
=> ( $product(imp(D,T,C),$product($to_real(T),recexp(D,T,C))) = $sum($sum($to_real(T),$product($product(D,recexp(D,T,$difference(C,1))),$to_real(lk($difference(C,1))))),mysumr(D,T,C,$difference(C,2))) ) ) ).
tff(mylk_0,axiom,
mylk(0) = 1 ).
tff(mylk_n,axiom,
! [K: $int] :
( ( $lesseq(1,K)
& $lesseq(K,problen) )
=> ( mylk(K) = $sum(lk(K),mylk($difference(K,1))) ) ) ).
tff(mylk_tot,axiom,
$lesseq(mylk(problen),probsize) ).
tff(mysumr_0,axiom,
! [D: $real,T: $int,C: $int] : ( mysumr(D,T,C,0) = 0.0 ) ).
tff(mysumr_n,axiom,
! [D: $real,T: $int,C: $int,K: $int] :
( $lesseq(1,K)
=> ( mysumr(D,T,C,K) = $sum($product(dc(D,T,C),$product(recexp(D,T,K),$to_real(lk(K)))),mysumr(D,T,C,$difference(K,1))) ) ) ).
%------------------------------------------------------------------------------