TPTP Problem File: PLA047_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : PLA047_1 : TPTP v9.0.0. Released v7.3.0.
% Domain : Planning
% Problem : Expected number of steps to proof of optimality - tougher
% Version : Especial.
% English : Number of solns at each fitness input as data. Number of fitness
% values = 6. Total = 8000. Initial distnce from optimum: 4.
% Assume only inc1 and dec1 have increased probability.
% Refs : [Wal18] Wallace (2018), Email to Geoff Sutcliffe
% Source : [Wal18]
% Names : tougher-local-search-thm-fixed [Wal18]
% Status : ContradictoryAxioms
% Rating : 0.62 v7.5.0, 0.70 v7.4.0, 0.50 v7.3.0
% Syntax : Number of formulae : 31 ( 19 unt; 7 typ; 0 def)
% Number of atoms : 31 ( 23 equ)
% Maximal formula atoms : 4 ( 1 avg)
% Number of connectives : 7 ( 0 ~; 0 |; 2 &)
% ( 0 <=>; 5 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 2 avg)
% Maximal term depth : 7 ( 2 avg)
% Number arithmetic : 124 ( 8 atm; 35 fun; 53 num; 28 var)
% Number of types : 2 ( 0 usr; 2 ari)
% Number of type conns : 19 ( 7 >; 12 *; 0 +; 0 <<)
% Number of predicates : 2 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 36 ( 7 usr; 25 con; 0-4 aty)
% Number of variables : 28 ( 28 !; 0 ?; 28 :)
% SPC : TF0_CAX_EQU_ARI
% Comments :
%------------------------------------------------------------------------------
tff(lk,type,
lk: $int > $int ).
tff(ns,type,
ns: $int > $int ).
tff(dc_type,type,
dc: ( $real * $int * $int ) > $real ).
tff(imp,type,
imp: ( $real * $int * $int ) > $real ).
tff(recexp,type,
recexp: ( $real * $int * $int ) > $real ).
tff(mysumr,type,
mysumr: ( $real * $int * $int * $int ) > $real ).
tff(mysump,type,
mysump: ( $real * $int * $int * $int ) > $real ).
tff(tougher_local_search,conjecture,
! [S: $real] :
( ( $lesseq(8000.0,recexp(S,8000,4))
& $lesseq(0.9,S)
& $lesseq(S,10.0) )
=> $lesseq(S,1.0) ) ).
tff(lk_0,axiom,
lk(0) = 1 ).
tff(lk_1,axiom,
lk(1) = 9 ).
tff(lk_2,axiom,
lk(2) = 40 ).
tff(lk_3,axiom,
lk(3) = 50 ).
tff(lk_4,axiom,
lk(4) = 100 ).
tff(lk_5,axiom,
lk(5) = 400 ).
tff(lk_6,axiom,
lk(6) = 600 ).
tff(ns_0,axiom,
ns(0) = 10 ).
tff(ns_1,axiom,
ns(1) = 50 ).
tff(ns_2,axiom,
ns(2) = 99 ).
tff(ns_3,axiom,
ns(3) = 190 ).
tff(ns_4,axiom,
ns(4) = 550 ).
tff(ns_5,axiom,
ns(5) = 1100 ).
tff(ns_6,axiom,
ns(6) = 1600 ).
tff(dc,axiom,
! [D: $real,T: $int,C: $int] : ( $product(dc(D,T,C),$to_real($difference(T,ns(C)))) = $difference($to_real(T),$product(D,$to_real(ns(C)))) ) ).
tff(imp_0,axiom,
! [D: $real,T: $int] : ( imp(D,T,0) = 0.0 ) ).
tff(imp_n,axiom,
! [D: $real,T: $int,C: $int] :
( $lesseq(1,C)
=> ( $product($to_real(T),imp(D,T,C)) = $sum($product(D,$to_real(lk($difference(C,1)))),mysump(D,T,C,$difference(C,2))) ) ) ).
tff(mysump_0,axiom,
! [D: $real,T: $int,C: $int] : ( mysump(D,T,C,0) = 0.0 ) ).
tff(mysump_n,axiom,
! [D: $real,T: $int,C: $int,K: $int] :
( $lesseq(1,K)
=> ( mysump(D,T,C,K) = $sum($product(dc(D,T,C),$to_real(lk(K))),mysump(D,T,C,$difference(K,1))) ) ) ).
tff(recexp_0,axiom,
! [D: $real,T: $int] : ( recexp(D,T,0) = 0.0 ) ).
tff(recexp_n,axiom,
! [D: $real,T: $int,C: $int] :
( $lesseq(1,C)
=> ( $product(imp(D,T,C),$product($to_real(T),recexp(D,T,C))) = $sum($sum($to_real(T),$product($product(D,recexp(D,T,$difference(C,1))),$to_real(lk($difference(C,1))))),mysumr(D,T,C,$difference(C,2))) ) ) ).
tff(mysumr_0,axiom,
! [D: $real,T: $int,C: $int] : ( mysumr(D,T,C,0) = 0.0 ) ).
tff(mysumr_n,axiom,
! [D: $real,T: $int,C: $int,K: $int] :
( $lesseq(1,K)
=> ( mysumr(D,T,C,K) = $sum($product(dc(D,T,C),$product(recexp(D,T,K),$to_real(lk(K)))),mysumr(D,C,T,$difference(K,1))) ) ) ).
%------------------------------------------------------------------------------