TPTP Problem File: PLA046_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : PLA046_1 : TPTP v9.0.0. Released v7.3.0.
% Domain : Planning
% Problem : Expected number of steps to proof of optimality - local
% Version : Especial.
% English : Assume search space is ct(10)=1; ct(9)=2; ...; ct(1) = 10
% Initial dist from opt = 10. Assume only inc1 and dec1 have
% increased probability.
% Refs : [Wal18] Wallace (2018), Email to Geoff Sutcliffe
% Source : [Wal18]
% Names : local-search-theorem-for-tptp [Wal18]
% Status : ContradictoryAxioms
% Rating : 1.00 v9.0.0, 0.88 v8.1.0, 1.00 v7.5.0, 0.90 v7.4.0, 0.75 v7.3.0
% Syntax : Number of formulae : 11 ( 4 unt; 4 typ; 0 def)
% Number of atoms : 12 ( 6 equ)
% Maximal formula atoms : 4 ( 1 avg)
% Number of connectives : 5 ( 0 ~; 0 |; 2 &)
% ( 0 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 3 avg)
% Maximal term depth : 7 ( 2 avg)
% Number arithmetic : 83 ( 6 atm; 32 fun; 34 num; 11 var)
% Number of types : 2 ( 0 usr; 2 ari)
% Number of type conns : 11 ( 4 >; 7 *; 0 +; 0 <<)
% Number of predicates : 2 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 19 ( 4 usr; 11 con; 0-3 aty)
% Number of variables : 11 ( 11 !; 0 ?; 11 :)
% SPC : TF0_THM_EQU_ARI
% Comments :
%------------------------------------------------------------------------------
tff(recf,type,
recf: ( $int * $real * $int ) > $real ).
tff(mysum,type,
mysum: ( $int * $real ) > $real ).
tff(pp,type,
pp: ( $int * $real * $int ) > $real ).
tff(zc,type,
zc: ( $int * $real * $int ) > $real ).
tff(local_search,conjecture,
! [Z: $real] :
( ( $lesseq(110.0,recf(10,Z,110))
& $lesseq(0.9,Z)
& $lesseq(Z,10.0) )
=> $lesseq(Z,1.0) ) ).
tff(zc_n,axiom,
! [M: $int,Z: $real] : ( $product($to_real($difference(110,$product(2,M))),zc(M,Z,110)) = $difference(110.0,$product(Z,$to_real($product(2,M)))) ) ).
tff(pp_n,axiom,
! [M: $int,Z: $real] : ( $product(110.0,pp(M,Z,110)) = $sum($product(Z,$to_real($difference(M,1))),$product(zc(M,Z,110),$product(0.5,$to_real($product($difference(M,2),$difference(M,1)))))) ) ).
tff(recf_1,axiom,
! [Z: $real] : ( recf(1,Z,110) = 0.0 ) ).
tff(recf_n,axiom,
! [M: $int,Z: $real] :
( $lesseq(2,M)
=> ( $product(pp(M,Z,110),recf(M,Z,110)) = $sum(1.0,$sum($product(recf($difference(M,1),Z,110),$product(Z,$to_real($difference(M,1)))),$product(zc(M,Z,110),mysum(M,Z)))) ) ) ).
tff(mysum_0,axiom,
! [Z: $real] : ( mysum(0,Z) = 0.0 ) ).
tff(mysum_n,axiom,
! [M: $int,Z: $real] :
( $lesseq(1,M)
=> ( mysum(M,Z) = $sum(mysum($difference(M,1),Z),$product(recf(M,Z,110),$to_real(M))) ) ) ).
%------------------------------------------------------------------------------