TPTP Problem File: PLA031-1.002.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : PLA031-1.002 : TPTP v9.0.0. Released v3.5.0.
% Domain : Planning
% Problem : Driver's log k=02
% Version : Especial.
% English : A planning domain that involves driving trucks around
% delivering packages between locations. The complication is
% that the trucks require drivers who must walk between trucks
% in order to drive them. The paths for walking and the roads
% for driving form different maps on the locations.
% Instances were semi-automatically translated from the basic
% Strips instances used in the 2002 Planning Competition.
% Refs : [LF03] Long & Fox (2003), The 3rd International Planning Compe
% : [NV07a] Navarro (2007), Email to Geoff Sutcliffe
% : [NV07b] Navarro & Voronkov (2007), Encoding Problems and Reaso
% Source : [NV07a]
% Names : driverlog02 [NV07a]
% Status : Unsatisfiable
% Rating : 0.00 v7.3.0, 0.10 v7.2.0, 0.11 v7.1.0, 0.14 v7.0.0, 0.00 v6.2.0, 0.12 v6.1.0, 0.25 v6.0.0, 0.00 v3.5.0
% Syntax : Number of clauses : 91 ( 65 unt; 0 nHn; 91 RR)
% Number of literals : 127 ( 0 equ; 44 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 4 ( 4 usr; 0 prp; 2-7 aty)
% Number of functors : 7 ( 7 usr; 7 con; 0-0 aty)
% Number of variables : 166 ( 2 sgn)
% SPC : CNF_UNS_EPR_NEQ_HRN
% Comments : Only instances 1-4 are within reach of current provers. (2007)
% : Translated from [LF03] using [NV07b]
%------------------------------------------------------------------------------
cnf(load1,axiom,
( ~ s(L,O2,O3,D1,D2,L,T2)
| s(truck1,O2,O3,D1,D2,L,T2) ) ).
cnf(load2,axiom,
( s(L,O2,O3,D1,D2,L,T2)
| ~ s(truck1,O2,O3,D1,D2,L,T2) ) ).
cnf(load3,axiom,
( ~ s(L,O2,O3,D1,D2,T1,L)
| s(truck2,O2,O3,D1,D2,T1,L) ) ).
cnf(load4,axiom,
( s(L,O2,O3,D1,D2,T1,L)
| ~ s(truck2,O2,O3,D1,D2,T1,L) ) ).
cnf(load5,axiom,
( ~ s(O1,L,O3,D1,D2,L,T2)
| s(O1,truck1,O3,D1,D2,L,T2) ) ).
cnf(load6,axiom,
( s(O1,L,O3,D1,D2,L,T2)
| ~ s(O1,truck1,O3,D1,D2,L,T2) ) ).
cnf(load7,axiom,
( ~ s(O1,L,O3,D1,D2,T1,L)
| s(O1,truck2,O3,D1,D2,T1,L) ) ).
cnf(load8,axiom,
( s(O1,L,O3,D1,D2,T1,L)
| ~ s(O1,truck2,O3,D1,D2,T1,L) ) ).
cnf(load9,axiom,
( ~ s(O1,O2,L,D1,D2,L,T2)
| s(O1,O2,truck1,D1,D2,L,T2) ) ).
cnf(load10,axiom,
( s(O1,O2,L,D1,D2,L,T2)
| ~ s(O1,O2,truck1,D1,D2,L,T2) ) ).
cnf(load11,axiom,
( ~ s(O1,O2,L,D1,D2,T1,L)
| s(O1,O2,truck2,D1,D2,T1,L) ) ).
cnf(load12,axiom,
( s(O1,O2,L,D1,D2,T1,L)
| ~ s(O1,O2,truck2,D1,D2,T1,L) ) ).
cnf(board1,axiom,
( ~ s(O1,O2,O3,L,D2,L,T2)
| ~ neq(D2,truck1)
| s(O1,O2,O3,truck1,D2,L,T2) ) ).
cnf(board2,axiom,
( s(O1,O2,O3,L,D2,L,T2)
| ~ s(O1,O2,O3,truck1,D2,L,T2) ) ).
cnf(board3,axiom,
( ~ s(O1,O2,O3,L,D2,T1,L)
| ~ neq(D2,truck2)
| s(O1,O2,O3,truck2,D2,T1,L) ) ).
cnf(board4,axiom,
( s(O1,O2,O3,L,D2,T1,L)
| ~ s(O1,O2,O3,truck2,D2,T1,L) ) ).
cnf(board5,axiom,
( ~ s(O1,O2,O3,D1,L,L,T2)
| ~ neq(D1,truck1)
| s(O1,O2,O3,D1,truck1,L,T2) ) ).
cnf(board6,axiom,
( s(O1,O2,O3,D1,L,L,T2)
| ~ s(O1,O2,O3,D1,truck1,L,T2) ) ).
cnf(board7,axiom,
( ~ s(O1,O2,O3,D1,L,T1,L)
| ~ neq(D1,truck2)
| s(O1,O2,O3,D1,truck2,T1,L) ) ).
cnf(board8,axiom,
( s(O1,O2,O3,D1,L,T1,L)
| ~ s(O1,O2,O3,D1,truck2,T1,L) ) ).
cnf(drive1,axiom,
( ~ s(O1,O2,O3,truck1,D2,S,T2)
| ~ link(S,D)
| s(O1,O2,O3,truck1,D2,D,T2) ) ).
cnf(drive2,axiom,
( ~ s(O1,O2,O3,truck2,D2,T1,S)
| ~ link(S,D)
| s(O1,O2,O3,truck2,D2,T1,D) ) ).
cnf(drive3,axiom,
( ~ s(O1,O2,O3,D1,truck1,S,T2)
| ~ link(S,D)
| s(O1,O2,O3,D1,truck1,D,T2) ) ).
cnf(drive4,axiom,
( ~ s(O1,O2,O3,D1,truck2,T1,S)
| ~ link(S,D)
| s(O1,O2,O3,D1,truck2,T1,D) ) ).
cnf(walk1,axiom,
( ~ s(O1,O2,O3,S,D2,T1,T2)
| ~ path(S,D)
| s(O1,O2,O3,D,D2,T1,T2) ) ).
cnf(walk2,axiom,
( ~ s(O1,O2,O3,D1,S,T1,T2)
| ~ path(S,D)
| s(O1,O2,O3,D1,D,T1,T2) ) ).
cnf(neq1,axiom,
~ neq(truck1,truck1) ).
cnf(neq2,axiom,
neq(truck1,truck2) ).
cnf(neq3,axiom,
neq(truck1,s0) ).
cnf(neq4,axiom,
neq(truck1,s1) ).
cnf(neq5,axiom,
neq(truck1,s2) ).
cnf(neq6,axiom,
neq(truck1,p1_0) ).
cnf(neq7,axiom,
neq(truck1,p2_1) ).
cnf(neq8,axiom,
neq(truck2,truck1) ).
cnf(neq9,axiom,
~ neq(truck2,truck2) ).
cnf(neq10,axiom,
neq(truck2,s0) ).
cnf(neq11,axiom,
neq(truck2,s1) ).
cnf(neq12,axiom,
neq(truck2,s2) ).
cnf(neq13,axiom,
neq(truck2,p1_0) ).
cnf(neq14,axiom,
neq(truck2,p2_1) ).
cnf(neq15,axiom,
neq(s0,truck1) ).
cnf(neq16,axiom,
neq(s0,truck2) ).
cnf(neq17,axiom,
~ neq(s0,s0) ).
cnf(neq18,axiom,
neq(s0,s1) ).
cnf(neq19,axiom,
neq(s0,s2) ).
cnf(neq20,axiom,
neq(s0,p1_0) ).
cnf(neq21,axiom,
neq(s0,p2_1) ).
cnf(neq22,axiom,
neq(s1,truck1) ).
cnf(neq23,axiom,
neq(s1,truck2) ).
cnf(neq24,axiom,
neq(s1,s0) ).
cnf(neq25,axiom,
~ neq(s1,s1) ).
cnf(neq26,axiom,
neq(s1,s2) ).
cnf(neq27,axiom,
neq(s1,p1_0) ).
cnf(neq28,axiom,
neq(s1,p2_1) ).
cnf(neq29,axiom,
neq(s2,truck1) ).
cnf(neq30,axiom,
neq(s2,truck2) ).
cnf(neq31,axiom,
neq(s2,s0) ).
cnf(neq32,axiom,
neq(s2,s1) ).
cnf(neq33,axiom,
~ neq(s2,s2) ).
cnf(neq34,axiom,
neq(s2,p1_0) ).
cnf(neq35,axiom,
neq(s2,p2_1) ).
cnf(neq36,axiom,
neq(p1_0,truck1) ).
cnf(neq37,axiom,
neq(p1_0,truck2) ).
cnf(neq38,axiom,
neq(p1_0,s0) ).
cnf(neq39,axiom,
neq(p1_0,s1) ).
cnf(neq40,axiom,
neq(p1_0,s2) ).
cnf(neq41,axiom,
~ neq(p1_0,p1_0) ).
cnf(neq42,axiom,
neq(p1_0,p2_1) ).
cnf(neq43,axiom,
neq(p2_1,truck1) ).
cnf(neq44,axiom,
neq(p2_1,truck2) ).
cnf(neq45,axiom,
neq(p2_1,s0) ).
cnf(neq46,axiom,
neq(p2_1,s1) ).
cnf(neq47,axiom,
neq(p2_1,s2) ).
cnf(neq48,axiom,
neq(p2_1,p1_0) ).
cnf(neq49,axiom,
~ neq(p2_1,p2_1) ).
cnf(map1,axiom,
path(s1,p1_0) ).
cnf(map2,axiom,
path(p1_0,s1) ).
cnf(map3,axiom,
path(s0,p1_0) ).
cnf(map4,axiom,
path(p1_0,s0) ).
cnf(map5,axiom,
path(s2,p2_1) ).
cnf(map6,axiom,
path(p2_1,s2) ).
cnf(map7,axiom,
path(s1,p2_1) ).
cnf(map8,axiom,
path(p2_1,s1) ).
cnf(map9,axiom,
link(s0,s1) ).
cnf(map10,axiom,
link(s1,s0) ).
cnf(map11,axiom,
link(s1,s2) ).
cnf(map12,axiom,
link(s2,s1) ).
cnf(map13,axiom,
link(s2,s0) ).
cnf(map14,axiom,
link(s0,s2) ).
cnf(init,axiom,
s(s1,s1,s1,s1,s1,s2,s0) ).
cnf(goal,negated_conjecture,
~ s(s0,s0,s2,s2,X5,s2,X7) ).
%------------------------------------------------------------------------------