TPTP Problem File: PLA028+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : PLA028+1 : TPTP v9.0.0. Bugfixed v2.5.0.
% Domain : Planning
% Problem : Blocks A, B => A/B
% Version : [Bau99] axioms.
% English :
% Refs : [Bau99] Baumgartner (1999), FTP'2000 - Problem Sets
% [KS96] Kautz & Selman (1996), Pushing the Envelope: Planning,
% [KS92] Kautz & Selman (1992), Planning as Satisfiability
% Source : [Bau99]
% Names : tiny [Bau99]
% Status : CounterSatisfiable
% Rating : 0.00 v6.2.0, 0.11 v6.1.0, 0.10 v6.0.0, 0.00 v5.4.0, 0.13 v5.3.0, 0.15 v5.2.0, 0.25 v5.0.0, 0.00 v4.1.0, 0.17 v4.0.1, 0.00 v3.1.0, 0.50 v2.7.0, 0.00 v2.6.0, 0.33 v2.5.0
% Syntax : Number of formulae : 45 ( 16 unt; 0 def)
% Number of atoms : 153 ( 0 equ)
% Maximal formula atoms : 8 ( 3 avg)
% Number of connectives : 133 ( 25 ~; 6 |; 45 &)
% ( 0 <=>; 57 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 5 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 12 ( 12 usr; 0 prp; 1-3 aty)
% Number of functors : 5 ( 5 usr; 4 con; 0-1 aty)
% Number of variables : 70 ( 70 !; 0 ?)
% SPC : FOF_CSA_RFO_NEQ
% Comments :
% Bugfixes : v2.5.0 - Combined multiple conjecture formulae.
%--------------------------------------------------------------------------
%----Include blocks world axioms
include('Axioms/PLA002+0.ax').
%--------------------------------------------------------------------------
fof(different_not_equal,hypothesis,
! [Y,X] :
( ( different(X,Y)
| different(Y,X) )
=> neq(X,Y) ) ).
fof(block_1_not_block_2,hypothesis,
different(block_1,block_2) ).
fof(block_1_not_table,hypothesis,
different(block_1,table) ).
fof(block_2_not_table,hypothesis,
different(block_2,table) ).
%----Blocks in the world:
fof(block_1,hypothesis,
a_block(block_1) ).
fof(block_2,hypothesis,
a_block(block_2) ).
fof(table,hypothesis,
a_block(table) ).
%----Blocks are further distinguished in 'fixed' (which cannot be moved)
%----'nonfixed'.
fof(fixed_table,hypothesis,
fixed(table) ).
fof(nonfixed_block_1,hypothesis,
nonfixed(block_1) ).
fof(nonfixed_block_2,hypothesis,
nonfixed(block_2) ).
%----Give here a list 0..N of timepoints in order to generate the states
%----of time N. Have to enumerate at least up to N in order to find a plan
%----of length N
fof(time_0,hypothesis,
time(time_0) ).
fof(time_1,hypothesis,
time(s(time_0)) ).
%----At any time, have some source, destination and object:
fof(some_source,hypothesis,
! [I] :
( time(I)
=> ( source(block_1,I)
| source(block_2,I)
| source(table,I) ) ) ).
fof(some_destination,hypothesis,
! [I] :
( time(I)
=> ( destination(block_1,I)
| destination(block_2,I)
| destination(table,I) ) ) ).
fof(some_object,hypothesis,
! [I] :
( time(I)
=> ( object(block_1,I)
| object(block_2,I) ) ) ).
%----Initial state: both blocks on table
fof(initial_1_on_table,hypothesis,
on(block_1,table,time_0) ).
fof(initial_clear_1,hypothesis,
clear(block_1,time_0) ).
fof(initial_2_on_table,hypothesis,
on(block_2,table,time_0) ).
fof(initial_clear_2,hypothesis,
clear(block_2,time_0) ).
%----Final state
fof(goal_time_1,hypothesis,
goal_time(s(time_0)) ).
fof(goal_state,conjecture,
! [S] :
( goal_time(S)
=> ( clear(block_1,S)
& on(block_1,block_2,S)
& on(block_2,table,S) ) ) ).
%--------------------------------------------------------------------------