TPTP Problem File: PLA002-2.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : PLA002-2 : TPTP v9.0.0. Released v1.0.0.
% Domain : Planning
% Problem : Getting from here to there, in all weather
% Version : Especial.
% Theorem formulation : Augmented.
% English :
% Refs : [Pla82] Plaisted (1982), A Simplified Problem Reduction Format
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.00 v7.4.0, 0.17 v7.1.0, 0.33 v7.0.0, 0.12 v6.3.0, 0.14 v6.2.0, 0.11 v6.1.0, 0.14 v5.5.0, 0.12 v5.4.0, 0.20 v5.2.0, 0.10 v5.1.0, 0.18 v5.0.0, 0.14 v4.1.0, 0.12 v4.0.1, 0.00 v2.4.0, 0.00 v2.2.1, 0.25 v2.1.0, 0.50 v2.0.0
% Syntax : Number of clauses : 23 ( 2 unt; 1 nHn; 18 RR)
% Number of literals : 64 ( 0 equ; 41 neg)
% Maximal clause size : 4 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 4 ( 4 usr; 0 prp; 1-2 aty)
% Number of functors : 12 ( 12 usr; 7 con; 0-2 aty)
% Number of variables : 27 ( 5 sgn)
% SPC : CNF_UNS_RFO_NEQ_NHN
% Comments : Includes sort information in the clauses. Inspired by the
% problems of building a model if there is no sort info. in the
% clauses. In this case the natural interpretation is not a
% model of the hypotheses, as meaningless (FALSE) instances of
% clauses can be made.
% : Modified by Geoff Sutcliffe.
%--------------------------------------------------------------------------
cnf(warm_or_cold,hypothesis,
( warm(Situation1)
| cold(Situation2)
| ~ situation(Situation1)
| ~ situation(Situation2) ) ).
cnf(walk_a_to_b,hypothesis,
( ~ at(a,Situation)
| at(b,walk(b,Situation))
| ~ situation(Situation) ) ).
cnf(drive_a_to_b,hypothesis,
( ~ at(a,Situation)
| at(b,drive(b,Situation))
| ~ situation(Situation) ) ).
cnf(walk_b_to_a,hypothesis,
( ~ at(b,Situation)
| at(a,walk(a,Situation))
| ~ situation(Situation) ) ).
cnf(drive_b_to_a,hypothesis,
( ~ at(b,Situation)
| at(a,drive(a,Situation))
| ~ situation(Situation) ) ).
cnf(cross_river_b_to_c,hypothesis,
( ~ cold(Situation)
| ~ at(b,Situation)
| at(c,skate(c,Situation))
| ~ situation(Situation) ) ).
cnf(cross_river_c_to_b,hypothesis,
( ~ cold(Situation)
| ~ at(c,Situation)
| at(b,skate(b,Situation))
| ~ situation(Situation) ) ).
cnf(climb_mountain_b_to_d,hypothesis,
( ~ warm(Situation)
| ~ at(b,Situation)
| at(d,climb(d,Situation))
| ~ situation(Situation) ) ).
cnf(climb_mountain_d_to_b,hypothesis,
( ~ warm(Situation)
| ~ at(d,Situation)
| at(b,climb(b,Situation))
| ~ situation(Situation) ) ).
cnf(go_c_to_d,hypothesis,
( ~ at(c,Situation)
| at(d,go(d,Situation))
| ~ situation(Situation) ) ).
cnf(go_d_to_c,hypothesis,
( ~ at(d,Situation)
| at(c,go(c,Situation))
| ~ situation(Situation) ) ).
cnf(go_c_to_e,hypothesis,
( ~ at(c,Situation)
| at(e,go(e,Situation))
| ~ situation(Situation) ) ).
cnf(go_e_to_c,hypothesis,
( ~ at(e,Situation)
| at(c,go(c,Situation))
| ~ situation(Situation) ) ).
cnf(go_d_to_f,hypothesis,
( ~ at(d,Situation)
| at(f,go(f,Situation))
| ~ situation(Situation) ) ).
cnf(go_f_to_d,hypothesis,
( ~ at(f,Situation)
| at(d,go(d,Situation))
| ~ situation(Situation) ) ).
cnf(initial_situation,hypothesis,
situation(s0) ).
cnf(walk_situation,hypothesis,
( ~ situation(Situation)
| situation(walk(Somewhere,Situation)) ) ).
cnf(drive_situation,hypothesis,
( ~ situation(Situation)
| situation(drive(Somewhere,Situation)) ) ).
cnf(climb_situation,hypothesis,
( ~ situation(Situation)
| situation(climb(Somewhere,Situation)) ) ).
cnf(skate_situation,hypothesis,
( ~ situation(Situation)
| situation(skate(Somewhere,Situation)) ) ).
cnf(go_situation,hypothesis,
( ~ situation(Situation)
| situation(go(Somewhere,Situation)) ) ).
cnf(initial,hypothesis,
at(f,s0) ).
cnf(prove_you_can_get_to_a_in_a_situation,negated_conjecture,
( ~ at(a,S)
| ~ situation(S) ) ).
%--------------------------------------------------------------------------