TPTP Problem File: PLA002-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : PLA002-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Planning
% Problem : Getting from here to there, in all weather
% Version : Especial.
% English : The problem is to travel from one place to another.
% Certain paths are passable at different times of the year, so
% a conditional plan must be generated. Either all situations
% are cold or all situations are warm. There is a river which
% may be crossed only in winter when it is covered with ice,
% and a mountain range may be crossed only in summer. The
% problem is to get from city F to city A.
% Refs : [Pla82] Plaisted (1982), A Simplified Problem Reduction Format
% Source : [Pla82]
% Names : Problem 5.7 [Pla82]
% Status : Unsatisfiable
% Rating : 0.00 v6.3.0, 0.14 v6.2.0, 0.00 v5.0.0, 0.07 v4.1.0, 0.00 v2.0.0
% Syntax : Number of clauses : 17 ( 2 unt; 1 nHn; 16 RR)
% Number of literals : 36 ( 0 equ; 19 neg)
% Maximal clause size : 3 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 3 ( 3 usr; 0 prp; 1-2 aty)
% Number of functors : 12 ( 12 usr; 7 con; 0-2 aty)
% Number of variables : 17 ( 3 sgn)
% SPC : CNF_UNS_RFO_NEQ_NHN
% Comments :
%--------------------------------------------------------------------------
cnf(warm_or_cold,hypothesis,
( warm(Situation1)
| cold(Situation2) ) ).
cnf(walk_a_to_b,hypothesis,
( ~ at(a,Situation)
| at(b,walk(b,Situation)) ) ).
cnf(drive_a_to_b,hypothesis,
( ~ at(a,Situation)
| at(b,drive(b,Situation)) ) ).
cnf(walk_b_to_a,hypothesis,
( ~ at(b,Situation)
| at(a,walk(a,Situation)) ) ).
cnf(drive_b_to_a,hypothesis,
( ~ at(b,Situation)
| at(a,drive(a,Situation)) ) ).
cnf(cross_river_b_to_c,hypothesis,
( ~ cold(Situation)
| ~ at(b,Situation)
| at(c,skate(c,Situation)) ) ).
cnf(cross_river_c_to_b,hypothesis,
( ~ cold(Situation)
| ~ at(c,Situation)
| at(b,skate(b,Situation)) ) ).
cnf(climb_mountain_b_to_d,hypothesis,
( ~ warm(Situation)
| ~ at(b,Situation)
| at(d,climb(d,Situation)) ) ).
cnf(climb_mountain_d_to_b,hypothesis,
( ~ warm(Situation)
| ~ at(d,Situation)
| at(b,climb(b,Situation)) ) ).
cnf(go_c_to_d,hypothesis,
( ~ at(c,Situation)
| at(d,go(d,Situation)) ) ).
cnf(go_d_to_c,hypothesis,
( ~ at(d,Situation)
| at(c,go(c,Situation)) ) ).
cnf(go_c_to_e,hypothesis,
( ~ at(c,Situation)
| at(e,go(e,Situation)) ) ).
cnf(go_e_to_c,hypothesis,
( ~ at(e,Situation)
| at(c,go(c,Situation)) ) ).
cnf(go_d_to_f,hypothesis,
( ~ at(d,Situation)
| at(f,go(f,Situation)) ) ).
cnf(go_f_to_d,hypothesis,
( ~ at(f,Situation)
| at(d,go(d,Situation)) ) ).
cnf(initial,hypothesis,
at(f,s0) ).
cnf(prove_you_can_get_to_a,negated_conjecture,
~ at(a,S) ).
%--------------------------------------------------------------------------