TPTP Problem File: PHI045^7.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : PHI045^7 : TPTP v9.1.0. Released v9.1.0.
% Domain : Philosophy
% Problem : Something godlike exists
% Version : [Gus24] axioms.
% English :
% Refs : [Gus24] Gustafsson (2024), A Goedelian Ontological Proof with
% Source : [Gus24]
% Names : Corollary1 [Gus24]
% Status : Theorem
% Rating : ? v9.1.0
% Syntax : Number of formulae : 8 ( 3 unt; 3 typ; 1 def)
% Number of atoms : 11 ( 1 equ; 0 cnn)
% Maximal formula atoms : 3 ( 2 avg)
% Number of connectives : 22 ( 2 ~; 0 |; 1 &; 13 @)
% ( 2 <=>; 2 =>; 0 <=; 0 <~>)
% ( 2 {.}; 0 {#})
% Maximal formula depth : 8 ( 4 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 7 ( 7 >; 0 *; 0 +; 0 <<)
% Number of symbols : 4 ( 2 usr; 1 con; 0-2 aty)
% Number of variables : 8 ( 2 ^ 5 !; 1 ?; 8 :)
% SPC : NH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
thf(semantics,logic,
( $modal
== [ $domains == $constant,
$designation == $rigid,
$terms == $local,
$modalities == $modal_system_KB ] ) ).
thf(individual_type,type,
individual: $tType ).
%----Positvity type
thf(positive_decl,type,
positive: (individual > $o) > $o ).
%----Godlike type
thf(godlike_decl,type,
godlike: individual > $o ).
%----Equivalent properties are alike in positivity
thf(axiomC1,axiom,
! [Phi: individual > $o] :
! [Psi: individual > $o] :
( ( {$necessary}
@ ( ! [X: individual] :
( ( Phi @ X )
<=> ( Psi @ X ) ) ) )
=> ( ( positive @ Phi )
<=> ( positive @ Psi ) ) ) ).
%----Contradictory properties are not positive.
thf(axiomC2,axiom,
! [Phi: individual > $o] :
~ ( positive
@ ^ [X: individual] :
( ( ( Phi @ X )
& ~ ( Phi @ X ) ) ) ) ).
%----Definition of being godlike as having all positive properties necessarily
thf(definitionC3,definition,
( godlike
= ( ^ [X: individual ] :
! [Phi: individual > $o] :
( ( positive @ Phi )
=> ( {$necessary}
@ ( Phi @ X ) ) ) ) ) ).
%----The individual of being godlike is positive.
thf(axiomC4,axiom,
( positive @ godlike ) ).
%----Something godlike exists
thf(theoremC6,conjecture,
? [X: individual] :
( godlike @ X ) ).
%------------------------------------------------------------------------------