TPTP Problem File: PHI045^10.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : PHI045^10 : TPTP v9.1.0. Released v9.1.0.
% Domain : Philosophy
% Problem : Something godlike exists, weakened
% Version : [Gus24] axioms.
% English :
% Refs : [Gus24] Gustafsson (2024), A Goedelian Ontological Proof with
% Source : [Gus24]
% Names : Corollary2Weakened [Gus24]
% Status : Theorem
% Rating : ? v9.1.0
% Syntax : Number of formulae : 10 ( 2 unt; 4 typ; 1 def)
% Number of atoms : 18 ( 2 equ; 0 cnn)
% Maximal formula atoms : 4 ( 3 avg)
% Number of connectives : 43 ( 4 ~; 0 |; 6 &; 24 @)
% ( 2 <=>; 5 =>; 0 <=; 0 <~>)
% ( 2 {.}; 0 {#})
% Maximal formula depth : 12 ( 6 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 7 ( 7 >; 0 *; 0 +; 0 <<)
% Number of symbols : 5 ( 3 usr; 1 con; 0-2 aty)
% Number of variables : 12 ( 5 ^ 5 !; 2 ?; 12 :)
% SPC : NH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
thf(semantics,logic,
( $modal
== [ $domains == $constant,
$designation == $rigid,
$terms == $local,
$modalities == $modal_system_KB ] ) ).
thf(individual_type,type,
individual: $tType ).
%----Positvity type
thf(positive_decl,type,
positive: (individual > $o) > $o ).
%----Godlike type
thf(godlike_decl,type,
godlike: individual > $o ).
%----Concretely exists type
thf(exists_decl,type,
exists: individual > $o ).
%----A individual equivalent and the contradictory individual are alike in
%----positivity
thf(axiomV1star,axiom,
! [Phi: individual > $o] :
( ( {$necessary}
@ ( ! [X: individual] :
( ( exists @ X )
=> ( ( Phi @ X )
<=> ( ^ [Y: individual] :
( ( Phi @ Y )
& ~ ( Phi @ Y ) )
@ X ) ) ) ) )
=> ( ( positive @ Phi )
<=> ( positive
@ ^ [Y: individual] :
( ( Phi @ Y )
& ~ ( Phi @ Y ) ) ) ) ) ).
%----Contradictory properties are not positive.
thf(axiomV2,axiom,
! [Phi: individual > $o] :
~ ( positive
@ ^ [X: individual] :
( ( ( Phi @ X )
& ~ ( Phi @ X ) ) ) ) ).
%----Being godlike entails having all positive properties necessarily
thf(axiomV3star,axiom,
! [X: individual] :
( ( exists @ X )
=> ( ( godlike @ X )
=> ! [Phi: individual > $o] :
( ( positive @ Phi )
=> ( {$necessary}
@ ( Phi @ X ) ) ) ) ) ).
%----Definition of exists
thf(definitionE,definition,
( exists
= ( ^ [X: individual] :
? [Y: individual] :
( ( exists @ Y )
& ( X = Y ) ) ) ) ).
%----The individual of being godlike is positive.
thf(axiomV4,axiom,
( positive
@ ^ [X: individual] :
( ( godlike @ X)
& ( exists @ X ) ) ) ).
%----Something godlike exists
thf(theoremV6,conjecture,
? [X: individual] :
( ( exists @ X )
& ( godlike @ X ) ) ).
%------------------------------------------------------------------------------