TPTP Problem File: PHI028+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : PHI028+1 : TPTP v9.0.0. Released v7.4.0.
% Domain : Philosophy
% Problem : Independence of Axiom III from the rest of DAPI plus AAs
% Version : [Hor19] axioms.
% English :
% Refs : [Hor19] Horner (2019), A Computationally Assisted Reconstructi
% [Hor20] Horner (2020), Email to Geoff Sutcliffe
% Source : [Hor20]
% Names : APPENDIX 14 [Hor19]
% Status : CounterSatisfiable
% Rating : 0.00 v7.5.0, 0.20 v7.4.0
% Syntax : Number of formulae : 21 ( 0 unt; 0 def)
% Number of atoms : 70 ( 2 equ)
% Maximal formula atoms : 6 ( 3 avg)
% Number of connectives : 59 ( 10 ~; 4 |; 21 &)
% ( 12 <=>; 12 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 5 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 49 ( 48 usr; 0 prp; 1-2 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 33 ( 33 !; 0 ?)
% SPC : FOF_CSA_EPR_SEQ
% Comments :
%------------------------------------------------------------------------------
include('Axioms/PHI002+0.ax').
%------------------------------------------------------------------------------
%----Axiom I. Everything which exists, exists either in itself or in something
%----else.
fof(exists,axiom,
! [X,Y] :
( exists(X)
<=> ( existsIn(X,X)
| ( existsIn(X,Y)
& X != Y ) ) ) ).
%----Axiom II. That which cannot be conceived through itself must be conceived
%----through something else.
fof(conceived_through,axiom,
! [X,Y] :
( ~ conceivedThru(X,X)
=> ( conceivedThru(X,Y)
& X != Y ) ) ).
%----Axiom III. From a given definite cause an effect necessarily follows;
%----and, on the other hand, if no definite cause be granted, it is impossible
%----that an effect can follow.
fof(definite_cause,conjecture,
! [X,Y] :
( definiteCause(X)
=> ( effectNecessarilyFollowsFrom(Y,X)
& ( ~ definiteCause(X)
=> ~ effectNecessarilyFollowsFrom(Y,X) ) ) ) ).
%----Axiom IV. The knowledge of an effect depends on and involves the knowledge
%----of a cause.
fof(knowledge_of_effect,axiom,
! [X,Y] :
( knowledgeOfEffect(X,Y)
<=> knowledgeOfACause(X) ) ).
%----Axiom V. Things which have nothing in common cannot be understood, the
%----one by the means of the other the one by means of the other; the
%----conception of one does not involve the conception of the other.
fof(have_nothing_in_common,axiom,
! [X,Y] :
( haveNothingInCommon(X,Y)
=> ( ~ canBeUnderstoodInTermsOf(X,Y)
& ~ canBeUnderstoodInTermsOf(Y,X)
& ~ conceptionInvolves(X,Y)
& ~ conceptionInvolves(Y,X) ) ) ).
%----Axiom VI. A true idea must correspond with its ideate or object.
fof(true_idea,axiom,
! [X,Y] :
( trueIdea(X)
=> ( correspondWith(X,Y)
& ( ideateOf(Y,X)
| objectOf(Y,X) ) ) ) ).
%----Axiom VII. If a thing can be conceived as non-existing, its essence does
%----not involve its existence.
fof(can_be_conceived_as_non_existing,axiom,
! [X] :
( canBeConceivedAsNonExisting(X)
=> ~ essenceInvExistence(X) ) ).
fof(has_substance_being,axiom,
! [X] :
( substance(X)
=> being(X) ) ).
fof(is_in_itself_is_self_caused,axiom,
! [X] :
( inItself(X)
=> selfCaused(X) ) ).
fof(being_has_essense,axiom,
! [X] :
( being(X)
=> hasEssence(X) ) ).
fof(essence_involves_existence_exists,axiom,
! [X] :
( ( essenceInvExistence(X)
& hasEssence(X) )
=> exists(X) ) ).
%------------------------------------------------------------------------------