TPTP Problem File: PHI018+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : PHI018+1 : TPTP v9.0.0. Released v7.4.0.
% Domain : Philosophy
% Problem : Independence of AA1 from the DAPI conjoined with AA4, AA7, and AA8
% Version : [Hor19] axioms.
% English :
% Refs : [Hor19] Horner (2019), A Computationally Assisted Reconstructi
% [Hor20] Horner (2020), Email to Geoff Sutcliffe
% Source : [Hor20]
% Names : APPENDIX 3 [Hor19]
% Status : CounterSatisfiable
% Rating : 0.00 v7.5.0, 0.20 v7.4.0
% Syntax : Number of formulae : 21 ( 0 unt; 0 def)
% Number of atoms : 70 ( 2 equ)
% Maximal formula atoms : 6 ( 3 avg)
% Number of connectives : 59 ( 10 ~; 4 |; 21 &)
% ( 12 <=>; 12 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 5 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 49 ( 48 usr; 0 prp; 1-2 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 33 ( 33 !; 0 ?)
% SPC : FOF_CSA_EPR_SEQ
% Comments :
%------------------------------------------------------------------------------
include('Axioms/PHI002+0.ax').
include('Axioms/PHI002+1.ax').
%------------------------------------------------------------------------------
fof(is_in_itself_is_self_caused,axiom,
! [X] :
( inItself(X)
=> selfCaused(X) ) ).
fof(being_has_essense,axiom,
! [X] :
( being(X)
=> hasEssence(X) ) ).
fof(essence_involves_existence_exists,axiom,
! [X] :
( ( essenceInvExistence(X)
& hasEssence(X) )
=> exists(X) ) ).
fof(has_substance_being,conjecture,
! [X] :
( substance(X)
=> being(X) ) ).
%------------------------------------------------------------------------------