TPTP Problem File: PHI013+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : PHI013+1 : TPTP v9.0.0. Released v7.2.0.
% Domain : Philosophy
% Problem : Anselm's ontological argument
% Version : [Wol16] axioms.
% English :
% Refs : [OZ11] Oppenheimer & Zalta (2011), A Computationally-Discover
% : [Wol16] Woltzenlogel Paleo (2016), Email to Geoff Sutcliffe
% Source : [Wol16]
% Names : ontological.p [Wol16]
% Status : Theorem
% Rating : 0.03 v9.0.0, 0.06 v7.4.0, 0.07 v7.2.0
% Syntax : Number of formulae : 9 ( 2 unt; 0 def)
% Number of atoms : 40 ( 2 equ)
% Maximal formula atoms : 8 ( 4 avg)
% Number of connectives : 33 ( 2 ~; 0 |; 15 &)
% ( 1 <=>; 15 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 6 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 6 ( 5 usr; 0 prp; 1-3 aty)
% Number of functors : 5 ( 5 usr; 5 con; 0-0 aty)
% Number of variables : 17 ( 9 !; 8 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : See http://mally.stanford.edu/cm/ontological-argument/
%------------------------------------------------------------------------------
fof(description_theorem_1,axiom,
! [F] :
( property(F)
=> ( ? [Y] :
( object(Y)
& exemplifies_property(F,Y)
& ! [Z] :
( object(Z)
=> ( exemplifies_property(F,Z)
=> Z = Y ) ) )
=> ? [U] :
( object(U)
& is_the(U,F) ) ) ) ).
fof(description_theorem_2,axiom,
! [F] :
( property(F)
=> ( ? [Y] :
( object(Y)
& is_the(Y,F) )
=> ! [Z] :
( object(Z)
=> ( is_the(Z,F)
=> exemplifies_property(F,Z) ) ) ) ) ).
fof(description_is_property_and_described_is_object,axiom,
! [X,F] :
( is_the(X,F)
=> ( property(F)
& object(X) ) ) ).
fof(definition_none_greater,axiom,
! [X] :
( object(X)
=> ( exemplifies_property(none_greater,X)
<=> ( exemplifies_property(conceivable,X)
& ~ ? [Y] :
( object(Y)
& exemplifies_relation(greater_than,Y,X)
& exemplifies_property(conceivable,Y) ) ) ) ) ).
fof(premise_1,axiom,
? [X] :
( object(X)
& exemplifies_property(none_greater,X) ) ).
fof(lemma_2,axiom,
( ? [X] :
( object(X)
& exemplifies_property(none_greater,X) )
=> ? [X] :
( object(X)
& exemplifies_property(none_greater,X)
& ! [Y] :
( object(Y)
=> ( exemplifies_property(none_greater,Y)
=> Y = X ) ) ) ) ).
fof(premise_2,axiom,
! [X] :
( object(X)
=> ( ( is_the(X,none_greater)
& ~ exemplifies_property(existence,X) )
=> ? [Y] :
( object(Y)
& exemplifies_relation(greater_than,Y,X)
& exemplifies_property(conceivable,Y) ) ) ) ).
fof(definition_god,axiom,
is_the(god,none_greater) ).
fof(god_exists,conjecture,
exemplifies_property(existence,god) ).
%------------------------------------------------------------------------------