TPTP Problem File: PHI012+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : PHI012+1 : TPTP v9.0.0. Released v7.2.0.
% Domain : Philosophy
% Problem : Lemma for Anselm's ontological argument
% Version : [Wol16] axioms.
% English :
% Refs : [OZ11] Oppenheimer & Zalta (2011), A Computationally-Discover
% : [Wol16] Woltzenlogel Paleo (2016), Email to Geoff Sutcliffe
% Source : [Wol16]
% Names : lemma2.p [Wol16]
% Status : Theorem
% Rating : 0.06 v8.1.0, 0.03 v7.2.0
% Syntax : Number of formulae : 3 ( 0 unt; 0 def)
% Number of atoms : 18 ( 2 equ)
% Maximal formula atoms : 7 ( 6 avg)
% Number of connectives : 16 ( 1 ~; 2 |; 7 &)
% ( 1 <=>; 5 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 8 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 4 ( 3 usr; 0 prp; 1-3 aty)
% Number of functors : 3 ( 3 usr; 3 con; 0-0 aty)
% Number of variables : 7 ( 4 !; 3 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : See http://mally.stanford.edu/cm/ontological-argument/
%------------------------------------------------------------------------------
fof(definition_none_greater,axiom,
! [X] :
( object(X)
=> ( exemplifies_property(none_greater,X)
<=> ( exemplifies_property(conceivable,X)
& ~ ? [Y] :
( object(Y)
& exemplifies_relation(greater_than,Y,X)
& exemplifies_property(conceivable,Y) ) ) ) ) ).
fof(connectedness_of_greater_than,axiom,
! [X,Y] :
( ( object(X)
& object(Y) )
=> ( exemplifies_relation(greater_than,X,Y)
| exemplifies_relation(greater_than,Y,X)
| X = Y ) ) ).
fof(lemma_2,conjecture,
( ? [X] :
( object(X)
& exemplifies_property(none_greater,X) )
=> ? [X] :
( object(X)
& exemplifies_property(none_greater,X)
& ! [Y] :
( object(Y)
=> ( exemplifies_property(none_greater,Y)
=> Y = X ) ) ) ) ).
%------------------------------------------------------------------------------