TPTP Problem File: PHI010+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : PHI010+1 : TPTP v9.0.0. Released v7.2.0.
% Domain : Philosophy
% Problem : Lemma for Anselm's ontological argument
% Version : [Wol16] axioms.
% English :
% Refs : [OZ11] Oppenheimer & Zalta (2011), A Computationally-Discover
% : [Wol16] Woltzenlogel Paleo (2016), Email to Geoff Sutcliffe
% Source : [Wol16]
% Names : lemma1.p [Wol16]
% Status : Theorem
% Rating : 0.03 v9.0.0, 0.06 v8.1.0, 0.08 v7.5.0, 0.09 v7.4.0, 0.03 v7.2.0
% Syntax : Number of formulae : 5 ( 0 unt; 0 def)
% Number of atoms : 25 ( 4 equ)
% Maximal formula atoms : 11 ( 5 avg)
% Number of connectives : 21 ( 1 ~; 0 |; 11 &)
% ( 1 <=>; 8 =>; 0 <=; 0 <~>)
% Maximal formula depth : 13 ( 7 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 5 ( 4 usr; 0 prp; 1-2 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 13 ( 12 !; 1 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : See http://mally.stanford.edu/cm/ontological-argument/
%------------------------------------------------------------------------------
fof(objects_are_not_properties,axiom,
! [X] :
( object(X)
=> ~ property(X) ) ).
fof(exemplifier_is_object_and_exemplified_is_property,axiom,
! [X,F] :
( exemplifies_property(F,X)
=> ( property(F)
& object(X) ) ) ).
fof(description_is_property_and_described_is_object,axiom,
! [X,F] :
( is_the(X,F)
=> ( property(F)
& object(X) ) ) ).
fof(description_axiom_identity_instance,axiom,
! [F,X,W] :
( ( property(F)
& object(X)
& object(W) )
=> ( ( is_the(X,F)
& X = W )
<=> ? [Y] :
( object(Y)
& exemplifies_property(F,Y)
& ! [Z] :
( object(Z)
=> ( exemplifies_property(F,Z)
=> Z = Y ) )
& Y = W ) ) ) ).
fof(lemma_1,conjecture,
! [X,F,Y] :
( ( object(X)
& property(F)
& object(Y) )
=> ( ( is_the(X,F)
& X = Y )
=> exemplifies_property(F,Y) ) ) ).
%------------------------------------------------------------------------------