TPTP Problem File: PHI009+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : PHI009+1 : TPTP v9.1.0. Released v7.2.0.
% Domain : Philosophy
% Problem : Lemma for Anselm's ontological argument
% Version : [Wol16] axioms.
% English :
% Refs : [OZ11] Oppenheimer & Zalta (2011), A Computationally-Discover
% : [Wol16] Woltzenlogel Paleo (2016), Email to Geoff Sutcliffe
% Source : [Wol16]
% Names : descripthm1.p [Wol16]
% Status : Theorem
% Rating : 0.15 v9.1.0, 0.12 v9.0.0, 0.11 v8.1.0, 0.06 v7.4.0, 0.07 v7.2.0
% Syntax : Number of formulae : 2 ( 0 unt; 0 def)
% Number of atoms : 19 ( 2 equ)
% Maximal formula atoms : 11 ( 9 avg)
% Number of connectives : 17 ( 0 ~; 0 |; 9 &)
% ( 1 <=>; 7 =>; 0 <=; 0 <~>)
% Maximal formula depth : 13 ( 12 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 5 ( 4 usr; 0 prp; 1-2 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 9 ( 6 !; 3 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : See http://mally.stanford.edu/cm/ontological-argument/
%------------------------------------------------------------------------------
fof(description_axiom_schema_instance,axiom,
! [F,G,X] :
( ( property(F)
& property(G)
& object(X) )
=> ( ( is_the(X,F)
& exemplifies_property(G,X) )
<=> ? [Y] :
( object(Y)
& exemplifies_property(F,Y)
& ! [Z] :
( object(Z)
=> ( exemplifies_property(F,Z)
=> Z = Y ) )
& exemplifies_property(G,Y) ) ) ) ).
fof(description_theorem_1,conjecture,
! [F] :
( property(F)
=> ( ? [Y] :
( object(Y)
& exemplifies_property(F,Y)
& ! [Z] :
( object(Z)
=> ( exemplifies_property(F,Z)
=> Z = Y ) ) )
=> ? [U] :
( object(U)
& is_the(U,F) ) ) ) ).
%------------------------------------------------------------------------------