TPTP Problem File: PHI005^6.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : PHI005^6 : TPTP v9.0.0. Released v9.0.0.
% Domain : Philosophy
% Problem : Necessarily, God exists
% Version : [Ben23] axioms.
% English :
% Refs : [Ben23] Benzmueller (2023), A Simplified Variant of Goedel's O
% : [Ben22] Benzmueller (2022), Email to Geoff Sutcliffe
% Source : [Ben22]
% Names : SimplifiedOntologicalArgument2 [Ben22]
% Status : Theorem
% Rating : 0.00 v9.0.0
% Syntax : Number of formulae : 7 ( 0 unt; 3 typ; 0 def)
% Number of atoms : 8 ( 1 equ; 0 cnn)
% Maximal formula atoms : 2 ( 2 avg)
% Number of connectives : 14 ( 2 ~; 0 |; 1 &; 8 @)
% ( 0 <=>; 2 =>; 0 <=; 0 <~>)
% ( 1 {.}; 0 {#})
% Maximal formula depth : 8 ( 5 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 5 ( 5 >; 0 *; 0 +; 0 <<)
% Number of symbols : 4 ( 2 usr; 1 con; 0-2 aty)
% Number of variables : 5 ( 1 ^; 3 !; 1 ?; 5 :)
% SPC : NH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
thf(multi_spec,logic,
$modal ==
[ $domains == $constant,
$designation == $rigid,
$terms == $local,
$modalities == $modal_system_K ] ).
thf(entity_decl,type,
entity: $tType ).
thf(god_like_decl,type,
god_like: entity > $o ).
thf(positive_property_decl,type,
positive_property: ( entity > $o ) > $o ).
thf(coro1,axiom,
~ ( positive_property
@ ^ [X: entity] : X != X ) ).
thf(coro2,axiom,
! [P1: entity > $o,P2: entity > $o] :
( ( ( positive_property @ P1 )
& ! [Y: entity] :
( ( P1 @ Y )
=> ( P2 @ Y ) ) )
=> ( positive_property @ P2 ) ) ).
thf(axiom3,axiom,
positive_property @ god_like ).
thf(conj_2,conjecture,
( {$necessary}
@ ? [X: entity] : ( god_like @ X ) ) ).
%------------------------------------------------------------------------------