TPTP Problem File: PHI004^8.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : PHI004^8 : TPTP v9.0.0. Released v9.0.0.
% Domain   : Philosophy
% Problem  : Being God-like is an essence of any God-like being
% Version  : [Ben16] axioms.
% English  :

% Refs     : [Ben16] Benzmueller (2016), Email to Geoff Sutcliffe
% Source   : [Ben16]
% Names    : scott_goedel_ontological_argument#1.p [Ben16]

% Status   : Theorem
% Rating   : 0.00 v9.0.0
% Syntax   : Number of formulae    :   11 (   2 unt;   4 typ;   2 def)
%            Number of atoms       :   19 (   2 equ;   0 cnn)
%            Maximal formula atoms :    3 (   2 avg)
%            Number of connectives :   37 (   2   ~;   0   |;   2   &;  22   @)
%                                         (   1 <=>;   7  =>;   0  <=;   0 <~>)
%                                         (   3 {.};   0 {#})
%            Maximal formula depth :    9 (   4 avg)
%            Number of types       :    2 (   0 usr)
%            Number of type conns  :   14 (  14   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :    7 (   4 usr;   2 con; 0-2 aty)
%            Number of variables   :   13 (   4   ^;   9   !;   0   ?;  13   :)
% SPC      : NH0_THM_EQU_NAR

% Comments :
%------------------------------------------------------------------------------
%----Scott's version of Goedel's Ontological Proof of the Existence of God
thf(simple_s5,logic,
    $alethic_modal == 
      [ $domains == $constant,
        $designation == $rigid,
        $terms == $local,
        $modalities == $modal_system_S5 ] ).

%----positive constant
thf(positive_type,type,
    positive: ( $i > $o ) > $o ).

%----godlike constant
thf(godlike_type,type,
    godlike: $i > $o ).

%----essence constant
thf(essence_type,type,
    essence: ( $i > $o ) > $i > $o ).

%----necessary existence constant
thf(ne_type,type,
    ne: $i > $o ).

%----A1: Either the property or its negation are positive, but not both.
thf(a1,axiom,
    ! [Phi: $i > $o] :
      ( ( positive
        @ ^ [X: $i] :
            ~ ( Phi @ X ) )
    <=> ~ ( positive @ Phi ) ) ).

%----A2: A property necessarily implied by a positive property is positive.
thf(a2,axiom,
    ! [Phi: $i > $o,Psi: $i > $o] :
      ( ( ( positive @ Phi )
        & ( {$box}
          @ ! [X: $i] :
              ( ( Phi @ X )
             => ( Psi @ X ) ) ) )
     => ( positive @ Psi ) ) ).

%----D1: A God-like being possesses all positive properties.
thf(d1,definition,
    ( godlike
    = ( ^ [X: $i] :
        ! [Phi: $i > $o] :
          ( ( positive @ Phi )
         => ( Phi @ X ) ) ) ) ).

%----A3: The property of being God-like is positive.
thf(a3,axiom,
    positive @ godlike ).

%----A4: Positive properties are necessary positive properties.
thf(a4,axiom,
    ! [Phi: $i > $o] :
      ( ( positive @ Phi )
     => ( {$necessary} @ ( positive @ Phi ) ) ) ).

%----D2: An essence of an individual is a property possessed by it and 
%----necessarily implying any of its properties.
thf(d2,definition,
    ( essence
    = ( ^ [Phi: $i > $o,X: $i] :
          ( ( Phi @ X )
          & ! [Psi: $i > $o] :
              ( ( Psi @ X )
             => ( {$necessary}
                @ ! [Y: $i] :
                    ( ( Phi @ Y )
                   => ( Psi @ Y ) ) ) ) ) ) ) ).

%----T2: Being God-like is an essence of any God-like being.
thf(t2,conjecture,
    ! [X: $i] :
      ( ( godlike @ X )
     => ( essence @ godlike @ X ) ) ).

%------------------------------------------------------------------------------