TPTP Problem File: PHI004^8.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : PHI004^8 : TPTP v9.0.0. Released v9.0.0.
% Domain : Philosophy
% Problem : Being God-like is an essence of any God-like being
% Version : [Ben16] axioms.
% English :
% Refs : [Ben16] Benzmueller (2016), Email to Geoff Sutcliffe
% Source : [Ben16]
% Names : scott_goedel_ontological_argument#1.p [Ben16]
% Status : Theorem
% Rating : 0.00 v9.0.0
% Syntax : Number of formulae : 11 ( 2 unt; 4 typ; 2 def)
% Number of atoms : 19 ( 2 equ; 0 cnn)
% Maximal formula atoms : 3 ( 2 avg)
% Number of connectives : 37 ( 2 ~; 0 |; 2 &; 22 @)
% ( 1 <=>; 7 =>; 0 <=; 0 <~>)
% ( 3 {.}; 0 {#})
% Maximal formula depth : 9 ( 4 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 14 ( 14 >; 0 *; 0 +; 0 <<)
% Number of symbols : 7 ( 4 usr; 2 con; 0-2 aty)
% Number of variables : 13 ( 4 ^; 9 !; 0 ?; 13 :)
% SPC : NH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
%----Scott's version of Goedel's Ontological Proof of the Existence of God
thf(simple_s5,logic,
$alethic_modal ==
[ $domains == $constant,
$designation == $rigid,
$terms == $local,
$modalities == $modal_system_S5 ] ).
%----positive constant
thf(positive_type,type,
positive: ( $i > $o ) > $o ).
%----godlike constant
thf(godlike_type,type,
godlike: $i > $o ).
%----essence constant
thf(essence_type,type,
essence: ( $i > $o ) > $i > $o ).
%----necessary existence constant
thf(ne_type,type,
ne: $i > $o ).
%----A1: Either the property or its negation are positive, but not both.
thf(a1,axiom,
! [Phi: $i > $o] :
( ( positive
@ ^ [X: $i] :
~ ( Phi @ X ) )
<=> ~ ( positive @ Phi ) ) ).
%----A2: A property necessarily implied by a positive property is positive.
thf(a2,axiom,
! [Phi: $i > $o,Psi: $i > $o] :
( ( ( positive @ Phi )
& ( {$box}
@ ! [X: $i] :
( ( Phi @ X )
=> ( Psi @ X ) ) ) )
=> ( positive @ Psi ) ) ).
%----D1: A God-like being possesses all positive properties.
thf(d1,definition,
( godlike
= ( ^ [X: $i] :
! [Phi: $i > $o] :
( ( positive @ Phi )
=> ( Phi @ X ) ) ) ) ).
%----A3: The property of being God-like is positive.
thf(a3,axiom,
positive @ godlike ).
%----A4: Positive properties are necessary positive properties.
thf(a4,axiom,
! [Phi: $i > $o] :
( ( positive @ Phi )
=> ( {$necessary} @ ( positive @ Phi ) ) ) ).
%----D2: An essence of an individual is a property possessed by it and
%----necessarily implying any of its properties.
thf(d2,definition,
( essence
= ( ^ [Phi: $i > $o,X: $i] :
( ( Phi @ X )
& ! [Psi: $i > $o] :
( ( Psi @ X )
=> ( {$necessary}
@ ! [Y: $i] :
( ( Phi @ Y )
=> ( Psi @ Y ) ) ) ) ) ) ) ).
%----T2: Being God-like is an essence of any God-like being.
thf(t2,conjecture,
! [X: $i] :
( ( godlike @ X )
=> ( essence @ godlike @ X ) ) ).
%------------------------------------------------------------------------------