TPTP Problem File: PHI002_1.rm
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : PHI002_1 : TPTP v9.0.0. Bugfixed v9.0.0.
% Domain : Philosophy
% Problem : Positive properties are possibly exemplified
% Version : [Ben16] axioms.
% English :
% Refs : [Ben16] Benzmueller (2016), Email to Geoff Sutcliffe
% Source : [Ben16]
% Names : scott_goedel_ontological_argument#1.p [Ben16]
% Status : Theorem
% Rating : 0.00 v9.0.0
% Syntax : Number of formulae : 7 ( 0 unt; 4 typ; 0 def)
% Number of atoms : 7 ( 0 equ; 0 cnn)
% Maximal formula atoms : 3 ( 2 avg)
% Number of connectives : 20 ( 2 ~; 0 |; 1 &; 11 @)
% ( 1 <=>; 3 =>; 0 <=; 0 <~>)
% ( 2 {.}; 0 {#})
% Maximal formula depth : 9 ( 7 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 11 ( 11 >; 0 *; 0 +; 0 <<)
% Number of symbols : 6 ( 4 usr; 2 con; 0-2 aty)
% Number of variables : 7 ( 1 ^; 5 !; 1 ?; 7 :)
% SPC : NH0_THM_NEQ_NAR
% Comments :
% Bugfixes : v9.0.0 - Renamed to PHI002^8
%------------------------------------------------------------------------------
%----Scott's version of Goedel's Ontological Proof of the Existence of God
thf(simple_s5,logic,
$alethic_modal ==
[ $domains == $constant,
$designation == $rigid,
$terms == $local,
$modalities == $modal_system_S5 ] ).
%----positive constant
thf(positive_type,type,
positive: ( $i > $o ) > $o ).
%----godlike constant
thf(godlike_type,type,
godlike: $i > $o ).
%----essence constant
thf(essence_type,type,
essence: ( $i > $o ) > $i > $o ).
%----necessary existence constant
thf(ne_type,type,
ne: $i > $o ).
%----A1: Either the property or its negation are positive, but not both.
thf(a1,axiom,
! [Phi: $i > $o] :
( ( positive
@ ^ [X: $i] :
~ ( Phi @ X ) )
<=> ~ ( positive @ Phi ) ) ).
%----A2: A property necessarily implied by a positive property is positive.
thf(a2,axiom,
! [Phi: $i > $o,Psi: $i > $o] :
( ( ( positive @ Phi )
& ( {$box}
@ ! [X: $i] :
( ( Phi @ X )
=> ( Psi @ X ) ) ) )
=> ( positive @ Psi ) ) ).
%----T1: Positive properties are possibly exemplified.
thf(t1,conjecture,
! [Phi: $i > $o] :
( ( positive @ Phi )
=> ( {$possible}
@ ? [X: $i] : ( Phi @ X ) ) ) ).
%------------------------------------------------------------------------------