TPTP Problem File: PHI002^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : PHI002^2 : TPTP v9.0.0. Released v6.1.0.
% Domain : Philosophy
% Problem : Positive properties are possibly exemplified
% Version : [Ben13] axioms : Reduced > Especial.
% English :
% Refs : [Ben13] Benzmueller (2013), Email to Geoff Sutcliffe
% Source : [Ben13]
% Names : T1 [Ben13]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.10 v8.2.0, 0.23 v8.1.0, 0.18 v7.5.0, 0.14 v7.4.0, 0.22 v7.2.0, 0.12 v7.1.0, 0.25 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.43 v6.1.0
% Syntax : Number of formulae : 50 ( 22 unt; 25 typ; 22 def)
% Number of atoms : 74 ( 23 equ; 0 cnn)
% Maximal formula atoms : 10 ( 2 avg)
% Number of connectives : 84 ( 5 ~; 3 |; 4 &; 69 @)
% ( 1 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 15 ( 2 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 149 ( 149 >; 0 *; 0 +; 0 <<)
% Number of symbols : 37 ( 34 usr; 12 con; 0-3 aty)
% Number of variables : 62 ( 52 ^; 6 !; 4 ?; 62 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
%----Axioms for Quantified Modal Logic K.
include('Axioms/LCL016^0.ax').
%----Axioms about God
% include('Axioms/PHI001^0.ax').
%------------------------------------------------------------------------------
%----Signature
thf(positive_tp,type,
positive: ( mu > $i > $o ) > $i > $o ).
%----A1: Either the property or its negation are positive, but not both.
%----(Remark: only the left to right is needed for proving T1)
thf(axA1,axiom,
( mvalid
@ ( mforall_indset
@ ^ [Phi: mu > $i > $o] :
( mequiv
@ ( positive
@ ^ [X: mu] : ( mnot @ ( Phi @ X ) ) )
@ ( mnot @ ( positive @ Phi ) ) ) ) ) ).
%----A2: A property necessarily implied by a positive property is positive.
thf(axA2,axiom,
( mvalid
@ ( mforall_indset
@ ^ [Phi: mu > $i > $o] :
( mforall_indset
@ ^ [Psi: mu > $i > $o] :
( mimplies
@ ( mand @ ( positive @ Phi )
@ ( mbox
@ ( mforall_ind
@ ^ [X: mu] : ( mimplies @ ( Phi @ X ) @ ( Psi @ X ) ) ) ) )
@ ( positive @ Psi ) ) ) ) ) ).
%----T1: Positive properties are possibly exemplified.
thf(thmT1,conjecture,
( mvalid
@ ( mforall_indset
@ ^ [Phi: mu > $i > $o] :
( mimplies @ ( positive @ Phi )
@ ( mdia
@ ( mexists_ind
@ ^ [X: mu] : ( Phi @ X ) ) ) ) ) ) ).
%------------------------------------------------------------------------------