TPTP Problem File: NUN061+2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUN061+2 : TPTP v9.0.0. Released v7.3.0.
% Domain : Number Theory
% Problem : Robinson arithmetic: There exist infinite evens
% Version : Especial.
% English :
% Refs : [BBJ03] Boolos et al. (2003), Computability and Logic
% : [Smi07] Smith (2007), An Introduction to Goedel's Theorems
% : [Lam18] Lampert (2018), Email to Geoff Sutcliffe
% Source : [Lam18]
% Names : infiniteevens [Lam18]
% Status : Theorem
% Rating : 1.00 v7.3.0
% Syntax : Number of formulae : 12 ( 0 unt; 0 def)
% Number of atoms : 60 ( 22 equ)
% Maximal formula atoms : 16 ( 5 avg)
% Number of connectives : 71 ( 23 ~; 18 |; 30 &)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 16 ( 8 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 5 ( 4 usr; 0 prp; 1-3 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 61 ( 33 !; 28 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated to FOL with equality.
%------------------------------------------------------------------------------
include('Axioms/NUM008+0.ax').
%------------------------------------------------------------------------------
fof(infiniteevens,conjecture,
! [X1] :
( ! [X2] :
( ? [Y2,Y5] :
( ? [Y6] :
( ? [Y12] :
( r4(Y12,Y2,Y6)
& ? [Y14] :
( r2(Y14,Y12)
& ? [Y16] :
( r1(Y16)
& r2(Y16,Y14) ) ) )
& Y6 = X2 )
& ? [Y9] :
( r3(Y2,Y5,Y9)
& Y9 = X2 ) )
& ? [Y3] :
! [Y8] :
( ~ r3(X1,Y3,Y8)
| Y8 != X2 ) )
| ! [Y1,Y4] :
( ! [Y10] :
( ~ r3(Y1,Y4,Y10)
| Y10 != X1 )
| ! [Y7] :
( ! [Y11] :
( ! [Y13] :
( ! [Y15] :
( ~ r1(Y15)
| ~ r2(Y15,Y13) )
| ~ r2(Y13,Y11) )
| ~ r4(Y11,Y1,Y7) )
| Y7 != X1 ) ) ) ).
%------------------------------------------------------------------------------