TPTP Problem File: NUN048^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUN048^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Number theory
% Problem : NSUM_TRIV_NUMSEG
% Version : Especial.
% English :
% Refs : [Kal16] Kalisyk (2016), Email to Geoff Sutcliffe
% Source : [Kal16]
% Names : NSUM_TRIV_NUMSEG_.p [Kal16]
% Status : Theorem
% Rating : 0.00 v7.1.0
% Syntax : Number of formulae : 13 ( 2 unt; 8 typ; 0 def)
% Number of atoms : 15 ( 5 equ; 0 cnn)
% Maximal formula atoms : 4 ( 3 avg)
% Number of connectives : 39 ( 1 ~; 0 |; 2 &; 32 @)
% ( 0 <=>; 4 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 6 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 15 ( 15 >; 0 *; 0 +; 0 <<)
% Number of symbols : 8 ( 7 usr; 1 con; 0-3 aty)
% Number of variables : 16 ( 0 ^; 14 !; 0 ?; 16 :)
% ( 2 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_NAR
% Comments : Exported from core HOL Light.
%------------------------------------------------------------------------------
thf('thf_type_type/nums/num',type,
'type/nums/num': $tType ).
thf('thf_const_const/trivia/I',type,
'const/trivia/I':
!>[A: $tType] : ( A > A ) ).
thf('thf_const_const/nums/NUMERAL',type,
'const/nums/NUMERAL': 'type/nums/num' > 'type/nums/num' ).
thf('thf_const_const/nums/_0',type,
'const/nums/_0': 'type/nums/num' ).
thf('thf_const_const/iterate/nsum',type,
'const/iterate/nsum':
!>[A: $tType] : ( ( A > $o ) > ( A > 'type/nums/num' ) > 'type/nums/num' ) ).
thf('thf_const_const/iterate/..',type,
'const/iterate/..': 'type/nums/num' > 'type/nums/num' > 'type/nums/num' > $o ).
thf('thf_const_const/arith/<=',type,
'const/arith/<=': 'type/nums/num' > 'type/nums/num' > $o ).
thf('thf_const_const/arith/<',type,
'const/arith/<': 'type/nums/num' > 'type/nums/num' > $o ).
thf('thm/trivia/I_THM_',axiom,
! [A: $tType,A0: A] :
( ( 'const/trivia/I' @ A @ A0 )
= A0 ) ).
thf('thm/arith/NOT_LT_',axiom,
! [A: 'type/nums/num',A0: 'type/nums/num'] :
( ( ~ ( 'const/arith/<' @ A @ A0 ) )
= ( 'const/arith/<=' @ A0 @ A ) ) ).
thf('thm/arith/LE_TRANS_',axiom,
! [A: 'type/nums/num',A0: 'type/nums/num',A1: 'type/nums/num'] :
( ( ( 'const/arith/<=' @ A @ A0 )
& ( 'const/arith/<=' @ A0 @ A1 ) )
=> ( 'const/arith/<=' @ A @ A1 ) ) ).
thf('thm/iterate/NSUM_EQ_0_NUMSEG_',axiom,
! [A: 'type/nums/num' > 'type/nums/num',A0: 'type/nums/num',A1: 'type/nums/num'] :
( ! [A2: 'type/nums/num'] :
( ( ( 'const/arith/<=' @ A0 @ A2 )
& ( 'const/arith/<=' @ A2 @ A1 ) )
=> ( ( A @ A2 )
= ( 'const/nums/NUMERAL' @ 'const/nums/_0' ) ) )
=> ( ( 'const/iterate/nsum' @ 'type/nums/num' @ ( 'const/iterate/..' @ A0 @ A1 ) @ A )
= ( 'const/nums/NUMERAL' @ 'const/nums/_0' ) ) ) ).
thf('thm/iterate/NSUM_TRIV_NUMSEG_',conjecture,
! [A: 'type/nums/num' > 'type/nums/num',A0: 'type/nums/num',A1: 'type/nums/num'] :
( ( 'const/arith/<' @ A1 @ A0 )
=> ( ( 'const/iterate/nsum' @ 'type/nums/num' @ ( 'const/iterate/..' @ A0 @ A1 ) @ A )
= ( 'const/nums/NUMERAL' @ 'const/nums/_0' ) ) ) ).
%------------------------------------------------------------------------------